Answer:
A change in pH in the protein habitat can modify its ionic bonds because because the chemical equilibrium shifts to one side or the other depends on the modification
Explanation:
The pH influences the charge acquired by the acidic and basic groups present in the molecules. Proteins usually have groups with characteristics of acid or weak base. Therefore, they are partially ionized in solution coexisting in equilibrium different species.
The degree of ionization of the different functional groups is in relation to the pH of the medium in which they are found, since the H3O + and OH- species are part of the equilibrium situation. Therefore, according to the pH, each group with characteristics of weak acid or base present in the molecule will be ionized to a lesser or greater extent. There are extreme situations where the balance has been totally displaced in one direction, for example: under very high pH conditions (low concentration of H3O +) weak acids are considered fully ionized, so the functional group will always have an electric charge. The same goes for the bases at very low pH values. In other equilibrium situations, species of the same molecule with different load will coexist in the solution, due to the pH value of the medium in which it is found.
The answer you’re looking for is 0.250
Answer:
on each side of the salt bridge, which is represented by a double vertical line
Explanation:
While writing a cell notation, the general convention is; anode || cathode. The anode and the cathode are separated by a double line. The anode is written on the lefthand side while the cathode is written on the righthand side.
The cell notation is a shorthand representation of a cell, hence any electrochemical cell can easily be produced based on its cell diagram.
Newton’s 2nd law? Maybe I’m not completely sure
The average atomic mass if the element above is calculated by the sum of the product of the isotope abundance and its atomic mass unit. It is expressed as:
Average atomic mass = Σ xi(Mi)
<span>Average atomic mass = (.7547 x 248.7) + (.2453 x 249.4) = 248.87
</span>
Hope this helps.