1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tom [10]
3 years ago
13

One major advantage of push/pull steering from the low-hand position is

Physics
1 answer:
Alja [10]3 years ago
6 0
<span>One major advantage of push/pull steering from the low-hand position is enhanced vehicle control because the arms stay close to the body and helps to maintain a more stable vertical body position.
</span><span>
</span><span>The hands are always placed on the steering and if the person encounters any unexpected situation, the person can make an instantaneous counter maneuver. It is designed in such a way that the arms are not covering the airbag.It stops sudden input of steering to avoid any under-steer or over-steer situation. Thus push/pull steering gives enhanced control over the vehicle.</span>
You might be interested in
A foot player runs 1.6m/s and has a KE of 790 J. What is his mass?
Mariana [72]
The equation for kinetic energy is,

Ke = (1/2)mv^2.

You're given a kinetic energy of 790 joules, and a speed of 1.6 m/s. Plugging these values into the equation, we get,

790 = (1/2)(1.6)^2(m).

Solving for m, we get,

m = (790)/(0.5(1.6)^2).

I'll let you crunch out those numbers for yourself :D

If you have any questions, feel free to ask. Hope this helps!
3 0
3 years ago
A. Community<br> B. Organism<br> C. Population <br> D. Individual
dimulka [17.4K]

Answer:

i think its B or D

Explanation:

its Individual or Organism

3 0
3 years ago
Read 2 more answers
n outer space, a constant net force with a magnitude of 140 N is exerted on a 32.5 kg probe initially at rest. A) What accelerat
musickatia [10]

Answer:

a) 4.31 m/s²

b) 215.5 m

Explanation:

a) According to Newton's first law of motion

The net force applied to particular mass produced acceleration, a, according to

F = ma

F = 140 N

m = 32.5 kg

a = ?

140 = 32.5 × a

a = 140/32.5 = 4.31 m/s²

b) Using the equations of motion, we can obtain the distance travelled by the object in t = 10 s

u = initial velocity of the probe = 0 m/s (since it was initially at rest)

a = 4.31 m/s²

t = 10 s

s = distance travelled = ?

s = ut + at²/2

s = 0 + (4.31×10²)/2 = 215.5 m

7 0
4 years ago
A student at a window on the second floor of a dorm sees her physics professor walking on the sidewalk beside the building. she
klasskru [66]
Refer to the diagram shown below.

In order for the balloon to strike the professor's head, th balloon should drop by 18 - 1.7 = 16.3 m in the time at the professor takes to walk 1 m.
The time for the professor to walk 1 m is
t = (1 m)/(0.45 m/s) = 2.2222 s

The initial vertical velocity of the balloon is zero.
The vertical drop of the balloon in 2.2222 s is
h = (1/2)*(9.8 m/s²)*(2.2222 s)² = 24.197 m

Because 24.97 > 16.3, the balloon lands in front of the professor, and does not hit the professor.

The time for the balloon to hit the ground is
(1/2)*(9.8)*t² = 18
t = 1.9166 s

The time difference is 2.2222 - 1.9166 = 0.3056 s
Within this time interval, the professor travels 0.45*0.3056 = 0.175 m
Therefore the balloon falls 0.175 m in front of the professor.

Answer: 
The balloon misses the professor, and falls 0.175 m in front of the professor.

8 0
3 years ago
What is the frequency of a wave having a period equal to 18 seconds <br>​
Ivanshal [37]

Explanation:

The time taken by a wave crest to travel a distance equal to the length of wave is known as wave period.

The relation between wave period and frequency is as follows.

T = \frac{1}{f}T=

f

1

where, T = time period

f = frequency

It is given that wave period is 18 seconds. Therefore, calculate the wave period as follows.

T = \frac{1}{f}T=

f

1

or, f = \frac{1}{T}f=

T

1

= \frac{1}{18 sec}

18sec

1

= 0.055 per second (1cycle per second = 1 Hertz)

or, f = 5.5 \times 10^{-2} hertz5.5×10 −2 hertz

<h3>Thus, we can conclude that the frequency of the wave is 5.5 \times 10^{-2} hertz5.5×10 −2 hertz .</h3>
3 0
3 years ago
Other questions:
  • Explain why is not advisable to use small values of I in performing an experiment on refraction through a glass prism?
    14·2 answers
  • Compare and contrast speed and velocity
    5·1 answer
  • A robot starts from a certain point and moves east for a distance of 5.0 meters, then goes north for 3.0 meters, and then turns
    12·1 answer
  • The movement of thermal energy from a warmer object to a cooler object is called
    12·2 answers
  • A 75 g, 30 cm long rod hangs vertically on a friction less, horizontal axel passing through the center. A 10 g ball of clay trav
    15·1 answer
  • Which of the following statements is true? Like charges attract and unlike charges repel each other. Gravitational forces only e
    13·1 answer
  • How do you open a door if its not locked?
    6·1 answer
  • When dry ice appears to be smoking what is actually happening
    6·1 answer
  • An explanation of the relationships among particular phenomena.
    10·2 answers
  • 4. You run from your house to a friend's house that is 3 miles away. You then walk
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!