1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
3 years ago
15

A clock is designed that uses a mass on the end of a spring as a timing mechanism. If the oscillation time needed is exactly one

second, what is the spring constant required if the mass is 1.3 kg
Physics
1 answer:
user100 [1]3 years ago
5 0

Answer:

The value is  k  =  51.34 \  N/ m

Explanation:

From the question we are told that

   The  mass is  m =  1.3 \  kg

   The needed oscillation time is  T = 1 \ s  

 Generally the spring constant is mathematically represented  as

         k  =  \frac{4 \pi^2 * m }{ T^2}

=>      k  =  \frac{4* 3.142^2 * 1.3 }{ 1^2}

=>      k  =  51.34 \  N/ m

You might be interested in
Suppose the gravitational force between two spheres is 30 N. If the magnitude of both masses doubles, and the distance between t
mixer [17]

Answer:

60 N

Explanation:

because when we double the 30N, we will get 60N as a force

8 0
3 years ago
The quantity of charge Q in coulombs (C) that has passed through a point in a wire up to time t (measured in seconds) is given b
Mnenie [13.5K]

Explanation:

The quantity of charge Q in coulombs (C) that has passed through a point in a wire up to time t (measured in seconds) is given by :

Q=t^3-2t^2+4t+4

We need to find the current flowing. We know that the rate of change of electric charge is called electric current. It is given by :

I=\dfrac{dQ}{dt}\\\\I=\dfrac{d(t^3-2t^2+4t+4)}{dt}\\\\I=3t^2-4t+4

At t = 1 s,

Current,

I=3(1)^2-4(1)+4\\\\I=3\ A

So, the current at t = 1 s is 3 A.

For lowest current,

\dfrac{dI}{dt}=0\\\\\dfrac{d(3t^2-4t+4)}{dt}=0\\\\6t-4=0\\\\t=0.67\ s

Hence, this is the required solution.

7 0
4 years ago
A thin rod of length 1.4 m and mass 140 g is suspended freely from one end. It is pulled to one side and then allowed to swing l
m_a_m_a [10]

Answer:

a The kinetic energy is  KE = 0.0543 J

b The height of the center of mass above that position is  h = 1.372 \ m    

Explanation:

From the question we are told that

  The length of the rod is  L = 1.4m

   The mass of the rod m = 140 = \frac{140}{1000} = 0.140 \ kg  

   The angular speed at the lowest point is w = 1.09 \ rad/s

Generally moment of inertia of the rod about an axis that passes through its one end is

                   I = \frac{mL^2}{3}  

Substituting values

               I = \frac{(0.140) (1.4)^2}{3}

               I = 0.0915 \ kg \cdot m^2

Generally the  kinetic energy rod is mathematically represented as

             KE = \frac{1}{2} Iw^2

                    KE = \frac{1}{2} (0.0915) (1.09)^2

                           KE = 0.0543 J

From the law of conservation of energy

The kinetic energy of the rod during motion =  The potential energy of the rod at the highest point

   Therefore

                   KE = PE = mgh

                        0.0543 = mgh

                             h = \frac{0.0543}{9.8 * 0.140}

                                h = 1.372 \ m    

                 

5 0
3 years ago
Read 2 more answers
Two identical stones are thrown from the top of a tall building. Stone 1 is thrown vertically downward with an initial speed v,
Molodets [167]

If the resistance of the Air is ignored, we can use the theory given by Galileo in which he warned that the thermal velocity of a body in free fall was given by

v= \frac{1}{2}gt

Where

g = Gravitational acceleration

t = time

As we can see the speed of objects in free fall is indifferent to the position that is launched (as long as the resistance of the air is ignored) or its mass.

Both bodies will end with the same thermal speed.

5 0
3 years ago
A 200 g load attached to a horizontal spring moves in simple harmonic motion with a period of 0.410 s. The total mechanical ener
defon

Complete question:

A 200 g load attached to a horizontal spring moves in simple harmonic motion with a period of 0.410 s. The total mechanical energy of the spring–load system is 2.00 J. Find

(a) the force constant of the spring and (b) the amplitude of the motion.

Answer:

(a) the force constant of the spring = 47 N/m

(b) the amplitude of the motion = 0.292 m

Explanation:

Given;

mass of the spring, m = 200g = 0.2 kg

period of oscillation, T = 0.410 s

total mechanical energy of the spring, E = 2 J

The angular speed is calculated as follows;

\omega = \frac{2\pi}{T} \\\\\omega = \frac{2\pi}{0.41} \\\\\omega = 15.33 \ rad/s

(a) the force constant of the spring

\omega = \sqrt{\frac{k}{m} } \\\\\omega^2 = \frac{k}{m} \\\\k = m \omega^2\\\\k = (0.2)(15.33)^2\\\\k = 47 \ N/m

(b) the amplitude of the motion

E = ¹/₂kA²

2E = kA²

A² = 2E/k

A = \sqrt{\frac{2E}{k} } \\\\A = \sqrt{\frac{2\times 2}{47} }\\\\A = 0.292 \ m

7 0
3 years ago
Other questions:
  • Three +3.0-μC point charges are at the three corners of a square of side 0.50 m. The last corner is occupied by a −3.0-μC charge
    14·2 answers
  • (01.02 MC) Nicole pushes her bike up a hill. Overhead, the sun exerts a gravitational force on Earth. Which statement is true ab
    9·2 answers
  • What causes a roller coaster to "lose" energy and stop? What force does it lose energy to? Give a detailed explanation that is e
    6·1 answer
  • A woman stands on a bathroom scale in a motionless elevator. When the elevator begins to move, the scale briefly reads only 0.90
    10·1 answer
  • In the rainy season, the Amazon flows fast and runs deep. In one location, the river is 22 m deep and moves at a speed of 4.4 m/
    10·2 answers
  • Do Number 8<br> Please respond fast<br> WILL MARK BRAINLIEST<br> (THIS INVOLVES INCLINED PLANES)
    12·1 answer
  • A 12.0N force with a fixed orientation does work on a
    12·1 answer
  • How are the interference patterns for light through a double slit and light through a single slit similar yet different
    5·1 answer
  • An observer sitting on shore sees a canoe traveling 5.0 m/s east, and a sailboat traveling 15.0 m/s west. What is the velocity o
    12·1 answer
  • A car was struck broadside, injuring the driver. you would expect that during the collision, the driver's:_________
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!