Answer:
14 m/s²
Explanation:
Start with Newton's 2nd law: Fnet=ma, with F being force, m being mass, and a being acceleration. The applied forces on the left and right side of the block are equivalent, so they cancel out and are negligible. That way, you only have to worry about the y direction. Don't forget the force that gravity has the object. It appears to me that the object is falling, so there would be an additional force from going down from weight of the object. Weight is gravity (can be rounded to 10) x mass. Substitute 4N+weight in for Fnet and 1kg in for m.
(4N + 10 x 1kg)=(1kg)a
14/1=14, so the acceleration is 14 m/s²
Answer is 6 tires.
This is a projectile question.
First make sure units are consistent - express speed in m/s.
20 km/h = 20000m / 3600 s = 5.56 m/s
Assume the takeoff point of the ramp is at ground level (height, h, = 0m). We need to determine how long Joe is in the air, and use that time to calculate the horizontal distance he traveled.
Joe is traveling 5.56 m/s on a ramp angled at 20 degrees. There are vertical and horizontal components to his speed:
Vertical speed = 5.56sin20 = 1.90 m/s
Horizontal speed = 5.56cos20 = 5.22 m/s
An easy way to proceed is to calculate the time it takes for Joe’s vertical speed to reach 0m/s - this represents the time when Joe is at his maximum height and is therefore halfway through the trip. Double whatever time this is to find the total time of the trip. Remember he is decelerating due to gravity:
Time to peak:
a = Δv / Δt
-9.8 = -1.9 / Δt
Δt = 0.19s
Total trip time:
0.19 x 2 = 0.38s
Now that we have the total tome Joe is in the air, we can find the horizontal distance he traveled:
v = d / t
5.22 = d / 0.38
d = 1.98m
Now divide this total distance by the length of an individual tire to find the number of tires he will clear:
1.98 / 0.3 = 6.6 tires
Therefore he can jump 6 tires safely (he will land in the middle of the 7th tire).
Lots of steps I know but just try to think of the situation and keep track of the vertical and horizontal things!
Answer:
If we have large numbers (b is positive) or small numbers (b is negative), then this way ... 1, and V2i = 100 L, n2i = 5 + 2 + 1 = 8 in vessel 2. ... a good working substance in the barometer.
Answer:
scatter plots show the relationship between the independent and dependent variables
Explanation:
A scatter plot is a graph which shows two variables plotted along two axes (usually the x and y axes). Scatter plots are useful in establishing any form of correlation between the dependent and independent variables in any study.
Correlation simply means the degree of relationship between variables, that is, how much does one variable affect the other? When scatter plots are almost a straight line graph, there is a high correlation between the variables. When the points in a scatter plot are isolated, there is little (sometimes zero) correlation between the variables.
Answer:
the process of that happening is called Dissolving
the substance that is dissolved is called
Solute