Yes, <span> the moon fall partly into earth's shadow when it is in its full size</span>
Answer:
a) A = 3 cm, b) T = 0.4 s, f = 2.5 Hz,
2) A standing wave the displacement of the wave is canceled and only one oscillation remains
Explanation:
a) in an oscillatory movement the amplitude is the highest value of the signal in this case
A = 3 cm
b) the period of oscillation is the time it takes for the wave to repeat itself in this case
T = 0.4 s
the period is the inverse of the frequency
f = 1 /T
f = 1 /, 0.4
f = 2.5 Hz
2) a traveling wave is a wave for which as time increases the displacement increases, in the case of a transverse wave the oscillation is perpendicular to the displacement and in the case of a longitudinal wave the oscillation is in the same direction of the displacement.
A standing wave occurs when a traveling wave bounces off some object and there are two waves, one that travels in one direction and the other that travels in the opposite direction. In this case, the displacement of the wave is canceled and only one oscillation remains.
There is kinetic energy when it is sitting at the top, then as it goes towards the bottom, the kinetic energy is transformed into potential energy.
Answer: 3.63 km/s
Explanation:
The escape velocity equation for a craft launched from the Earth surface is:
Where:
is the escape velocity
is the Universal Gravitational constant
is the mass of the Earth
is the Earth's radius
However, in this situation the craft would be launched at a height
over the Eart's surface with a space elevator. Hence, we have to add this height to the equation:
Finally:
<h2>
Option A is the correct answer.</h2>
Explanation:
Acceleration due to gravity

G = 6.67 × 10⁻¹¹ m² kg⁻¹ s⁻²
Let mass of earth be M and radius of earth be r.
We have

Now
A hypothetical planet has a mass of one-half that of the earth and a radius of twice that of the earth.
Mass of hypothetical planet, M' = M/2
Radius of hypothetical planet, r' = 2r
Substituting

Option A is the correct answer.