1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
777dan777 [17]
3 years ago
7

A 4.40-kilogram hoop starts from rest at a height 1.70 m above the base of an inclined plane and rolls down under the influence

of gravity. What is the linear speed of the hoop's center of mass just as the hoop leaves the incline and rolls onto a horizontal surface
Physics
2 answers:
Anestetic [448]3 years ago
4 0

Answer:

The linear velocity is  v=4.08m/s

Explanation:

According to the law of conservation of energy

   The potential energy possessed by the  hoop at the top of the inclined plane is converted to the kinetic energy at the foot of the inclined plane

        The kinetic energy can be mathematically represented as

                    KE = \frac{mv^2}{2} + \frac{Iw}{2}

Where I is the moment of inertia possessed by the hoop  which is mathematically represented as

                 I = mr^2

Here R is the radius of the hoop

         w is the angular velocity which the hoop has at the bottom of the lower part of the inclined plane which is mathematically represented as

                          w = \frac{v}{r}

Where v linear speed of the hoop's center of mass just as the hoop leaves the incline and rolls onto a horizontal surface

      Now expressing the above statement mathematically

            potential \ energy = \frac{mv^2}{y} + \frac{Iw^2}{2}

               mgh = \frac{mv^2}{y} + \frac{Iw^2}{2}

=>            mgh =\frac{mv^2}{2} + \frac{(mr^2)(\frac{v}{r})^2 }{2}  

=>          mgh = \frac{mv^2}{2} + \frac{mv^2}{2}

=>           mgh = mv^2

=>              v = \sqrt{gh}

Substituting values

                v = \sqrt{9.81 * 1.7}

                  v=4.08m/s

Alexandra [31]3 years ago
3 0

Answer:

vcm = 4.08 m/s

Explanation:

  • Assuming the inclined plane is frictionless, and that the hoop is rolling without slippling, the total mechanical energy of the hoop must be conserved:

        \Delta K + \Delta U = 0     (1)

  • As the hoop starts from rest, the change in kinetic energy will be equal to the final kinetic energy of the hoop.
  • This kinetic energy will have a part of rotational kinetic energy (due to the rotation around an axis passing through the center of the hoop), and a translational part, due to the translation of the center of mass.
  • This kinetic energy can be written as follows:

        K_{tot} = \frac{1}{2} * I_{hoop} *\omega^{2} +  \frac{1}{2} * m *v_{cm}^{2}  (2)

  • where Ihoop, is the moment of inertia of the hoop = m*r².
  • If the hoop rolls without slipping, there exists a fixed relationship between the angular velocity ω and the velocitity of the center of mass vcm, as follows:

        \omega = \frac{v_{cm} }{r}

  • Replacing the values of  I and ω in (2), we have:

       K_{tot} = \frac{1}{2} * m*r^{2} * (\frac{v_{cm} }{r} )^{2}  +  \frac{1}{2} * m *v_{cm}^{2} = \\ \\ K_{tot} = m*v_{cm} ^{2}

  • This change in kinetic energy must be equal to the change in gravitational potential energy.
  • If we choose as our zero reference level the bottom of the incline, the change in gravitational potential energy is as follows:

       \Delta U = U_{f} - U_{o} = 0 - m*g*h = - m*g*h

  • From (0), simplifying common terms and rearranging, we can solve for vcm, as follows:
  • v_{cm} =\sqrt{g*h} =\sqrt{1.70 m* 9.8 m/s2  } = 4.08 m/s
You might be interested in
What work is done by the electric force when the charge moves a distance of 2.70 m at an angle of 45.0∘ downward from the horizo
Andreyy89

Incomplete question as many data is missing.I have assumed value of charge and electric field.The complete question is here

A charge of 28 nC is placed in a uniform electric field that is directed vertically upward and that has a magnitude of 5.00×10⁴ V/m.

What work is done by the electric force when the charge moves a distance of 2.70 m at an angle of 45.0 degrees  downward from the horizontal?

Answer:

W_{work}=2.67*10^{-3}J

Explanation:

Given data

Charge q=28 nC

Electric field E=5.00×10⁴ V/m.

Distance d=2.70 m

Angle α=45°

To find

Work done by electric force

Solution

W_{work}=F_{force}*D_{distance}Cos\alpha  \\where\\F_{force}=q_{charge}*E_{Electric-Field}\\So\\W_{work}=qE*D*Cos\alpha \\W_{work}=(28*10^{-9}C )(5.00*10^{4}V/m )(2.70m)Cos(45)\\W_{work}=2.67*10^{-3}J

8 0
3 years ago
You and your friend are going bungee jumping! You wait directly below them with a camera. When they leap from the bridge they be
Alex

Answer:

The amplitude  is  A =  90.2 \ m

Explanation:

From the question we are told that

    The frequency of when sound is approaching observer is   f = 392 Hz

     The frequency as the move away from observer  is  f_ a =  330 \ Hz

    The time between the pitch are t =  10 \ s

Here you are the observer and your friends are the source of the sound

The period is mathematically evaluated as

       T =  2 t

as it is the time to complete one oscillation which from on highest pitch to the next highest pitch

Now T can also be mathematically represented as

          T = \frac{2 \pi}{w}

Where  w is the angular velocity

=>   \frac{2 \pi}{w}  =  2 * 10

=>   w =  0.314 \ rad/sec

Now using Doppler Effect,

   The source of the sound is approaching the observer

The

          f = f_o (\frac{v}{v- wA} )

         392  = f_o (\frac{v}{v- wA} )

Where A is the amplitude

    So when the source is moving away from the observer

         f_a =  f_o (\frac{v}{v+ wA} )  

        330  =  f_o (\frac{v}{v+ wA} )  

Here  f_o is the fundamental frequency

Dividing the both equation  we have

           \frac{392}{330}  =  \frac{f_o(\frac{v}{v-wA} )}{f_o(\frac{v}{v+wA}}

           1.1878  = \frac{v+wA}{v-wA}

         1.1878 v -  1.1878 wA = v+wA

        1.1878 v = 2.1878 wA

=>     A =  \frac{(0.1878 * (330))}{(2.1878)* (0.314)}

         A =  90.2 \ m

7 0
3 years ago
A 30.0-μF capacitor is connected to a 49.0-Ω resistor and a generator whose rms output is 30.0 V at 60.0 Hz. (a) Find the rms
Natali5045456 [20]

Explanation:

Given that,

Capacitor = 30μC

Resistor = 49.0Ω

Voltage = 30.0 V

Frequency = 60.0 Hz

We need to calculate the impedance

Using formula of impedance

Z=\sqrt{R^2+X_{c}^2}.....(I)

We need to calculate the value of X_{c}

Using formula of X_{c}

X_{c}=\dfrac{1}{2\pi f c}

X_{c}=\dfrac{1}{2\times\pi\times60.0\times30\times10^{-6}}

X_{c}=88.42\ \Omega

Put the value of X_{c} into the formula of impedance

Z=\sqrt{(49.0)^2+(88.42)^2}

Z=101.08\ \Omega

(a). We need to calculate the rms current in the circuit

Using formula of rms current

I_{rms}=\dfrac{V}{Z}

I_{rms}=\dfrac{30.0}{101.08}

I_{rms}=0.30\ A

The rms current in the circuit is 0.30 A.

(b). We need to calculate the rms voltage drop across the resistor

Using formula of rms voltage

V_{rms}=I_{rms}\times R

Put the value into the formula

V_{rms}=0.30\times49.0

V_{rms}=14.7\ V

The rms voltage drop across the resistor is 14.7 V

(c). We need to calculate the rms voltage drop across the capacitor

Using formula of rms voltage

V_{rms}=I_{rms}\times X_{C}

V_{rms}=0.30\times88.42

V_{rms}=26.53\ V

The rms voltage drop across the capacitor is 26.53 V.

Hence, This is the required solution.

4 0
3 years ago
One of the way atoms bond with each other would be through:
Galina-37 [17]

Answer:

ehdgywi

Explanation:

djhcuowhciwurvgwyirgvy mm. ncmsmsmx. n. mssmsmiwvfiywrvvkjbwviverbladcnviwrgqecocqeboodqeugচঠচবি

8 0
3 years ago
4. Compara. La composición de la gasolina para los coches cambia del invierno al verano. La mezcla de los componentes de la gaso
dedylja [7]
Skisosjssnbxhxsndjsksksksa
5 0
3 years ago
Other questions:
  • Can two people do different work, but have the same power?
    13·2 answers
  • Consider the binding energy of two stable nuclei, one with 60 nucleons and one with 200 nucleons. a. Is the total binding energy
    11·1 answer
  • Convert the following: 9.87 x 108s = _____ h
    12·2 answers
  • If gravity is the only force acting on you, why<br> aren't you moving down right now?
    15·2 answers
  • An ion of an element has 30 protons 32 neutrons and 29 electrons what is that charge and how did you make that determination
    13·2 answers
  • During bicycling, a 70 kg person's body produces energy at a rate of about 500 W due to metabolism, 80% of which is converted to
    14·1 answer
  • The part of the computer that provides access to the internet is
    13·1 answer
  • Objects through which light can pass are referred to as dash objects​
    11·1 answer
  • A bullet is fired horizontally at 343 m/s from the top of a building where height is 37.3 m. The built will be
    10·1 answer
  • Establish the relationship between acceleration and force ​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!