Answer:
Analytical Groups I and II
Explanation:
Precipitation reactions happen when anions and cations in aqueous solution mix together to form an insoluble ionic solid which is now referred to as a precipitate.
Whether or not a type of reaction like that takes place can be determined by utilizing the solubility principles for common ionic solids.
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wpazsebu
Answer:

Explanation:
When adding or subtracting values, you must round your answer to the same "place" as the measurement with its last significant figure furthest to the left.
That is, you round off to the same number of decimal places as the measurement with the fewest decimal places.

The measurements of 14.0 and 10.6 have one digit after the decimal point, so you round the sum to have only one digit to the right of the decimal.
The number to be dropped (3) is less than 5, so you drop it.

The answer for the following question is option "C".
Option C is not included in the John Dalton's modern theory of an atom.
- "It states atoms of different elements combine to form new compound" but not new elements
Explanation:
According to John's Dalton's modern theory of an atom:
1. All matter is composed of atoms.
2. Atoms cannot be created,destroyed or subdivided in the ordinary chemical reactions.
3. Atoms of one element differ in the properties from atoms of an another element.
(i.e.)Each and every atom of the element has its own unique properties of their own.
4. Atoms of one element combine with the atoms of another element to <u>form new compound.</u>
5. Atoms that make up an element are identical to each other.
The combustion reaction of octane is as follow,
C₈H₁₈ + 25/2 O₂ → 8 CO₂ + 9 H₂O
According to balance equation,
8 moles of CO₂ are released when = 114.23 g (1 mole) Octane is reacted
So,
6.20 moles of CO₂ will release when = X g of Octane is reacted
Solving for X,
X = (114.23 g × 6.20 mol) ÷ 8 mol
X = 88.52 g of Octane
Result:
88.52 g of Octane is needed to release 6.20 mol CO₂.