Answer:
5.9 × 10^-6.
Explanation:
In the arrangements of crystal solids there is likely going to be an imperfection or defect and one of the defect or imperfections in the arrangements of solids is known as the Schottky defects. The Schottky defects is a kind of lattice arrangements imperfection that occurs when positively charged ions and negatively charged ions leave their position.
So, let us delve right into the solution of the question. We will be making use of the formula below;
Wb/ W = e^ - c/ 2kT.
Where Wb/ W= fraction of lattice sites, c= energy for defect formation = 1.86 eV, and T = temperature= 623° C= 896 k.
So, Wb/ W = e ^ -1.86/ (2 × 896 × 8.62 × 10^ -5).
Wb/ W= 0.000005896557435956372.
Wb/ W=5.9 × 10^-6.
Answer:
just read the explanation.
Explanation:
1.Maintaining a healthy, perennial plant cover.
2.Mulching.
3.Planting a cover crop – such as winter rye in vegetable gardens.
4.Placing crushed stone, wood chips, and other similar materials in heavily used areas where vegetation is hard to establish and maintain.
Hope this helps. :)
Considering that CCL3F gas behave like an ideal gas then we can use the Ideal Gas Law
<span>PV = nRT, however is an approximation and not the only way to resolve this problem with the given data..So,at the end of the solution I am posting some sources for further understanding and a expanded point of view. </span>
<span>Data: P= 856torr, T = 300K, V= 1.1L, R = 62.36 L Torr / KMol </span>
<span>Solving and substituting in the Gas equation for n = PV / RT = (856)(1.1L) /( 62.36)(300) = 0.05 Mol. This RESULT is of any gas. To tie it up to our gas we need to look for its molecular weight:MW of CCL3F = 137.7 gm/mol. </span>
<span>Then : 0.05x 137.5 = 6.88gm of vapor </span>
<span>If we sustract the vapor weight from the TOTAL weight of liquid we have: 11.5gm - 6.88gm = 4.62 gm of liquid.d</span>
Answer;
The answer is No,
Explanation;
-The intersection of two parallel half-planes A and B is either a half-plane (either A or B, when A and B have similar orientation) or the empty set (when A and B have opposite orientation).
-When A and B are not parallel, their intersection is a maximal open region bounded by the two lines that define A and B, respectively. In this case, the intersection always exists and it is never a half-plane.