<span>Answer:
Nothing is balanced in your final equation: not H, not O, not Cr, not I and your charges aren't either.
Start with your 2 half reactions:
I- --> IO3-
Cr2O72- --> 2 Cr3+
Balance O by adding H2O:
I- + 3 H2O --> IO3-
Cr2O72- --> 2 Cr3+ + 7H2O
Balance H by adding H+:
I- + 3 H2O --> IO3- + 6 H+
Cr2O72- + 14 H+ --> 2 Cr3+ + 7H2O
Balance charge by adding e-:
I- + 3 H2O --> IO3- + 6 H+ + 6 e-
Cr2O72- + 14 H+ + 6 e- --> 2 Cr3+ + 7H2O
Since the numbers of electrons in your two half reactions are the same, just add them and simplify to give:
Cr2O72- + I- + 8 H+ --> IO3- + 2 Cr3+ + 4 H2O</span>
The independent variable would be the variable in the research that is being manipulated by the researcher. In this case, it would be temperature in the cage as it is what is being manipulated and changed in the research design. The dependent variable would be the variable that is being studied so, for this case, it would be the length and the weight of the mice. The constants are the factors that might affect the dependent variable but is held constant or the same by the researcher throughout the experiment. These are the size of the cage, amount of food and the exercise wheel. The flaw that the scientist would be studying the length of the mice since I don't think the temperature has any effect on it. And base from he results, the change in lengths are not conclusive.
In general, The more valence electrons a metal has, the stronger its metallic bonds will be because Boron is a metalloid and is ionically bonded.it is too electronegative to release its valence electrons for metallic bonding.As a result, their valence electrons feel a stronger pull from the nucleus (a greater effective nuclear charge) and are less easily released for metallic bonding.
Answer:
84672 J
Explanation:
From the question given above, the following data were obtained:
Height (h) = 72 m
Combined mass (m) = 120 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
We can obtain the energy by using the following formula:
E = mgh
Where
E => is the energy.
g => is the acceleration due to gravity
m => is the mass.
h => is the height.
E = 120 × 9.8 × 72
E = 84672 J
Thus, the energy is 84672 J
Answer:
Please one time click here
Mark brainliest