Answer:
0.0159m
Explanation:
9 M
Explanation:
Lead(II) chloride,
PbCl
2
, is an insoluble ionic compound, which means that it does not dissociate completely in lead(II) cations and chloride anions when placed in aqueous solution.
Instead of dissociating completely, an equilibrium rection governed by the solubility product constant,
K
sp
, will be established between the solid lead(II) chloride and the dissolved ions.
PbCl
2(s]
⇌
Pb
2
+
(aq]
+
2
Cl
−
(aq]
Now, the molar solubility of the compound,
s
, represents the number of moles of lead(II) chloride that will dissolve in aqueous solution at a particular temperature.
Notice that every mole of lead(II) chloride will produce
1
mole of lead(II) cations and
2
moles of chloride anions. Use an ICE table to find the molar solubility of the solid
PbCl
2(s]
⇌
Pb
2
+
(aq]
+
2
Cl
−
(aq]
I
−
0
0
C
x
−
(+s)
(
+
2
s
)
E
x
−
s
2
s
By definition, the solubility product constant will be equal to
K
sp
=
[
Pb
2
+
]
⋅
[
Cl
−
]
2
K
sp
=
s
⋅
(
2
s
)
2
=
s
3
This means that the molar solubility of lead(II) chloride will be
4
s
3
=
1.6
⋅
10
−
5
⇒
s
= √
1.6
4
⋅
10
−
5 =
0.0159 M
C metamorphic rock
Why: because o know
Answer:
31.3 g
The answer is higher than the true answer.
Explanation:
By neglecting the heat lost by other processes, the energy conservation states that:
Qcooling + Qevaporate = 0
The cooling process happens without phase change, so the heat can be calculated by:
Qcooling = m*c*ΔT
Where m is the mass, c is the heat capacity (cwater = 4184 J/kg.K), and ΔT is the temperature variation (final - initial).
The evaporate process happen without changing of temperature (pure substance), and the heat can be calculated by:
Qevaporate = m*L
Where m is the mass evaporated and L is the heat of evaporation (2340000 J/kg).
0.350*4184*(45 - 95) + m*2340000 = 0
2340000m = 73220
m = 0.0313 kg
m = 31.3 g
Because of the assumptions made, the real mass is not that was calculated. There'll be changing mass when the coffee is cooling, and there'll be heat loses by other processes because the system is not isolated. Also, the substance is not pure. So, there'll be more factors at the energy equation, thus, the answer is higher than the true answer.
Answer:
B. The carbons on either side of the double bond are Pointed in opposite directions
Answer:
C
Explanation:
Of course increasing the pressure will reduce the volume
P1V1 = P2V2
P1V1/P2 = V2 WHEN P2 = 2 P1----multiply both sides by 1/2
P1 V1 / 2P1 = 1/2 V2 <===== 1/2 the original