The acceleration of the object after 3 seconds of fall is -9.8 m/s².
The given parameters;
- initial velocity of the object, u = 0
- time of motion of the object, t = 3 seconds
Acceleration is the change in velocity per change in time of motion.
The acceleration of the object after 3 seconds of fall is calculated as follows;
- Since the object is in free fall, the object experiences only acceleration due to gravity.
- the magnitude of this acceleration due to gravity is 9.8 m/s²
- the direction of this acceleration is downwards
Thus, the acceleration of the object after 3 seconds of fall is -9.8 m/s².
Learn more here: brainly.com/question/13197713
<span>The answers are --
a) wind direction
b) wind speed
e) intensity of precipitation
f) location of precipitation</span>
The star with apparent magnitude 2 is more brighter than 7.
To find the answer, we have to know about apparent magnitude.
<h3>What is apparent magnitude?</h3>
- 100 times as luminous as a star with an apparent brightness of 7 is a star with a magnitude of 2.
- The apparent magnitude of bigger stars is always smaller.
- The brightest star in the night sky is Sirius.
- The brightness of a star or other celestial object perceived from Earth is measured in apparent magnitude (m).
- The apparent magnitude of an object is determined by its inherent luminosity, its distance from Earth, and any light extinction brought on by interstellar dust in the path of the observer's line of sight.
Thus, we can conclude that, the star with apparent magnitude 2 is more brighter than 7.
Learn more about the apparent magnitude here:
brainly.com/question/350008
#SPJ4
Answer:
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Explanation:
The distance travelled on the rough ice is equal to the width of the rough ice.
distance d = 5.0 m
Initial speed u = 9.2 m/s
Final speed v = 5.8 m/s
The time taken to move through the rough ice can be calculated using the equation of motion;
d = 0.5(u+v)t
time t = 2d/(u+v)
Substituting the given values;
t = 2(5)/(9.2+5.8)
t = 2/3 = 0.66667 second
The acceleration is the change in velocity per unit time;
acceleration a = ∆v/t
a = (v-u)/t
Substituting the values;
a = (5.8-9.2)/0.66667
a = -5.099974500127
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Answer: W = J
Explanation: Since the potassium ion is at the outside membrane of a cell and the potential here is lower than the potential inside the cell, the transport will need work to happen.
The work to transport an ion from a lower potential side to a higher potential side is calculated by
q is charge;
ΔV is the potential difference;
Potassium ion has +1 charge, which means:
p = C
To determine work in joules, potential has to be in Volts, so:
Then, work is
To move a potassium ion from the exterior to the interior of the cell, it is required J of energy.