- One common use of a convex mirror is as shaving mirror.
- One common use of convex mirror is as rear-view mirrors in automobiles vehicles.
<h3>What is a
concave mirror?</h3>
A concave mirror is also referred to as a converging mirror and it can be defined as a type of mirror that is designed and developed with a reflective surface that is typically curved inward and away from the source of light.
Basically, one common use of a convex mirror include the following:
<h3>What is a
convex mirror?</h3>
A convex mirror is also referred to as a diverging mirror and it can be defined as a type of mirror that is designed and developed with a reflective surface that typically bulges outward toward the source of light.
Basically, one common use of convex mirror is as rear-view mirrors in automobiles vehicles.
Read more on convex mirror here: brainly.com/question/24175067
#SPJ1
<h3>Question:</h3>
How to find g (acceleration due to gravity)
<h3>Solution:</h3>
We know,
Acceleration due to gravity (g)

where, G = Gravitational constant

M = Mass of the earth

R = Radius of the earth

Putting these values of G, M and R in the above formula, we get

So, the value of acceleration due to gravity is

Hope it helps.
Do comment if you have any query.
Oceanic because it’s denser
Answer:
a) t = 0.0185 s = 18.5 ms
b) T = 874.8 N
Explanation:
a)
First we find the seed of wave:
v = fλ
where,
v = speed of wave
f = frequency = 810 Hz
λ = wavelength = 0.4 m
Therefore,
v = (810 Hz)(0.4 m)
v = 324 m/s
Now,
v = L/t
where,
L = length of wire = 6 m
t = time taken by wave to travel length of wire
Therefore,
324 m/s = 6 m/t
t = (6 m)/(324 m/s)
<u>t = 0.0185 s = 18.5 ms</u>
<u></u>
b)
From the formula of fundamental frquency, we know that:
Fundamental Frequency = v/2L = (1/2L)(√T/μ)
v = √(T/μ)
where,
T = tension in string
μ = linear mass density of wire = m/L = 0.05 kg/6 m = 8.33 x 10⁻³ k gm⁻¹
Therefore,
324 m/s = √(T/8.33 x 10⁻³ k gm⁻¹)
(324 m/s)² = T/8.33 x 10⁻³ k gm⁻¹
<u>T = 874.8 N</u>
Plate tectonics<span>is a </span>scientific theory<span> that describes the large-scale motion of </span>Earth<span>'s </span>lithosphere<span>. This theoretical model builds on the concept of </span>continental drift<span> which was developed during the first few decades of the 20th century. The </span>geoscientific<span> community accepted plate-tectonic theory after </span>seafloor spreading was validated in the late 1950s and early 1960s.<span>The lithosphere, which is the rigid outermost shell of a planet (the crust and upper mantle), is broken up into </span>tectonic plates<span>. </span>