a) we can answer the first part of this by recognizing the player rises 0.76m, reaches the apex of motion, and then falls back to the ground we can ask how
long it takes to fall 0.13 m from rest: dist = 1/2 gt^2 or t=sqrt[2d/g] t=0.175
s this is the time to fall from the top; it would take the same time to travel
upward the final 0.13 m, so the total time spent in the upper 0.15 m is 2x0.175
= 0.35s
b) there are a couple of ways of finding thetime it takes to travel the bottom 0.13m first way: we can use d=1/2gt^2 twice
to solve this problem the time it takes to fall the final 0.13 m is: time it
takes to fall 0.76 m - time it takes to fall 0.63 m t = sqrt[2d/g] = 0.399 s to
fall 0.76 m, and this equation yields it takes 0.359 s to fall 0.63 m, so it
takes 0.04 s to fall the final 0.13 m. The total time spent in the lower 0.13 m
is then twice this, or 0.08s
<span>Different materials expand and contract at different rates based on temperature. Just like if you leave a plastic bottle full of water in a freezer it will burst, but if you leave it partially full no problem.....Ok?Expansion joints do the same for bridges. There is a gap to allow for temperature related expansions and contractions. Sometimes you drive over bridges and roadways where this movement is constricted and you might notice a bumpy ride. Engineers can predict the variation of structural length based on span lengths and leave the necessary gaps.....btw, NICE QUESTION:)</span>
Mitochondria is the cell organelle the provides energy to function it also helps in respiration .It is called also as the power house of the cell