Answer:
Low pressure systems typically arrive with storms and clouds. Air motion is usually upwards, as heated are is less dense and more buoyant than cooler air. A high pressure system is typically cooler than its counter-part, and skies are usually clear. Low pressure systems carry more water vapor due to rising hot air cooling and condensing.
It would be both speed and direction depending on the man's swing
Answer:
<em>The kinetic energy of a spinning disk will be reduced to a tenth of its initial kinetic energy if its moment of inertia is made five times larger, but its angular speed is made five times smaller.</em>
<em></em>
Explanation:
Let us first consider the initial characteristics of the angular motion of the disk
moment of inertia = 
angular speed = ω
For the second case, we consider the characteristics to now be
moment of inertia =
(five times larger)
angular speed = ω/5 (five times smaller)
Recall that the kinetic energy of a spinning body is given as

therefore,
for the first case, the K.E. is given as

and for the second case, the K.E. is given as


<em>this is one-tenth the kinetic energy before its spinning characteristics were changed.</em>
<em>This implies that the kinetic energy of the spinning disk will be reduced to a tenth of its initial kinetic energy if its moment of inertia is made five times larger, but its angular speed is made five times smaller.</em>
Answer:
38 N, 40.0° below the horizontal
Explanation:
Force exerted by an object equals mass times acceleration of that object: F = m ⨉ a. To use this formula, you need to use SI units: Newtons for force, kilograms for mass, and meters per second squared for acceleration.
The sign of the charged particle is positively charged.
<h3>What is potential difference?</h3>
- When a single charge is transported in an electric field, work is done by the potential difference (also known as electrical potential).
- There is potential energy stored in this charge that could flow when work is done on it.
- Voltage is the possibility of a single charge flowing. The need to flow increases with voltage.
- Here, voltage can be the potential differences.
The potential difference between the 2 points determines the movement of that particle. An electron moves from lower to higher potential which is negatively charged, and a positively charged particle moves from higher to lower potential.
Now, since the particle is moving from a point A having 160 v potential to point B having 100 v potential that is it is moving from higher potential to a lower potential therefore the particle will be a positively charged one.
Learn more about potential difference,
brainly.com/question/23716417
#SPJ1