1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
3 years ago
13

If gravity on the earth increased, what affect would it have on the moon

Physics
1 answer:
Rufina [12.5K]3 years ago
6 0

Answer:

If gravity on Earth is increased, this gravitational tugging would have influenced the moon's rotation rate. If it was spinning more than once per orbit, Earth would pull at a slight angle against the moon's direction of rotation, slowing its spin. If the moon was spinning less than once per orbit, Earth would have pulled the other way, speeding its rotation.

You might be interested in
Which statements are true concerning Newton's law of gravitation? The gravitational force is related to the mass of each object.
OLEGan [10]

Answer:

The gravitational force is related to the mass of each object.

The gravitational force is an attractive force.

Explanation:

Gravitational force is a long range force of attraction between any two masses.

Mathematically given as :

F=G.\frac{m_1.m_2}{r^2}

where:

m_1 & m_2 are the masses

r= distance between the center of mass of the two objects.

G= gravitational constant = 6.67\times 10^{-11} m^3.kg^{-1}.s^{-2}

From the above relation of eq. (1) it is clear that,

Gravitational force is inversely proportional to the square of the distance and directly proportional to the masses.

The mass of an object is independent of its size due to the fact that density may vary for different objects.

The force of gravity varies with height as:

\frac{g}{g_x} =(\frac{r_x}{r} )^2

where:

g=9.8\,m.s^{-2}

g_x= gravity at height r_x of the center of mass of the object from the center of mass of the earth.

and we know that force:

F=m\times g

where: m= mass of the object.

5 0
3 years ago
What is the momentum of a 1200 kg car traveling with a speed of 27 m/s (60 mph)?
serious [3.7K]

Answer:

This is your answer

Explanation:

Actually I took this from go ogle

3 0
3 years ago
In February 1955, a paratrooper fell 362 m from an airplane without being able to open his chute but happened to land in snow, s
serious [3.7K]

Answer:

s = 0.9689 m

Explanation:

given,

Height of fall of paratroopers = 362 m

speed of impact = 52 m/s

mass of paratrooper = 86 Kg

From from snow on him = 1.2 ✕ 10⁵ N

now using formula

F = m a

a = F/m

a = \dfrac{1.2 \times 10^5}{86}

a =1395.35\ m/s^2

Using equation of motion

v² = u² + 2 a s

s =\dfrac{v^2}{2a}

s =\dfrac{52^2}{2\times 1395.35}

s = 0.9689 m

The minimum depth of snow that would have stooped him is  s = 0.9689 m

8 0
3 years ago
A leaky 10-kg bucket is lifted from the ground to a height of 11 m at a constant speed with a rope that weighs 0.9 kg/m. Initial
nalin [4]

Answer:

the work done to lift the bucket = 3491 Joules

Explanation:

Given:

Mass of bucket = 10kg

distance the bucket is lifted = height = 11m

Weight of rope= 0.9kg/m

g= 9.8m/s²

initial mass of water = 33kg

x = height in meters above the ground

Let W = work

Using riemann sum:

the work done to lift the bucket =∑(W done by bucket, W done by rope and W done by water)

= \int\limits^a_b {(Mass of Bucket + Mass of Rope + Mass of water)*g*d} \, dx

Work done in lifting the bucket (W) = force × distance

Force (F) = mass × acceleration due to gravity

Force = 9.8 * 10 = 98N

W done by bucket = 98×11 = 1078 Joules

Work done to lift the rope:

At Height of x meters (0≤x≤11)

Mass of rope = weight of rope × change in distance

= 0.8kg/m × (11-x)m

W done = integral of (mass×g ×distance) with upper 11 and lower limit 0

W done = \int\limits^1 _0 {9.8*0.8(11-x)} \, dx

Note : upper limit is 11 not 1, problem with math editor

W done = 7.84 (11x-x²/2)upper limit 11 to lower limit 0

W done = 7.84 [(11×11-(11²/2)) - (11×0-(0²/2))]

=7.84(60.5 -0) = 474.32 Joules

Work done in lifting the water

At Height of x meters (0≤x≤11)

Rate of water leakage = 36kg ÷ 11m = \frac{36}{11}kg/m

Mass of rope = weight of rope × change in distance

= \frac{36}{11}kg/m × (11-x)m =  3.27kg/m × (11-x)m

W done = integral of (mass×g ×distance) with upper 11 and lower limit 0

W done = \int\limits^1 _0 {9.8*3.27(11-x)} \, dx

Note : upper limit is 11 not 1, problem with math editor

W done = 32.046 (11x-x²/2)upper limit 11 to lower limit 0

W done = 32.046 [(11×11-(11²/2)) - (11×0-(0²/2))]

= 32.046(60.5 -0) = 1938.783 Joules

the work done to lift the bucket =W done by bucket+ W done by rope +W done by water)

the work done to lift the bucket = 1078 +474.32+1938.783 = 3491.103

the work done to lift the bucket = 3491 Joules

8 0
3 years ago
2. An airplane traveling north at 220. meters per second encounters a 50.0-meters-per-second crosswind
Alex777 [14]

The resultant speed of the plane  is (3) 226 m/s

Why?

We can calculate the resultant speed of the plane by using the Pythagorean Theorem since both speeds are perpendicular (forming a right triangle).

So, calculating we have:

ResultantSpeed=\sqrt{VerticalSpeed^{2}+HorizontalSpeed^{2}}\\\\ResultantSpeed=\sqrt{(220\frac{m}{s})^{2}+50\frac{m}{s})^{2}

ResulntantSpeed=\sqrt{48400\frac{m^{2} }{s^{2} }+2500\frac{m^{2} }{s^{2} } } \\\\ResultantSpeed=\sqrt{50900\frac{m^{2} }{s^{2} }}=226\frac{m}{s}

Hence, we have that the resultant speed of the plane  is (3) 226 m/s

Have a nice day!

5 0
3 years ago
Other questions:
  • Kristina works out seven days a week. Lately, she has been tired, and her body aches. If she is overtraining, which training pri
    7·1 answer
  • What is the theory of punctuated equilibrium answers?
    15·2 answers
  • 10 points and brailiest to correct answer plz
    15·2 answers
  • Which statement regarding the importance of human relations is false? A. People accomplish more in their work and personal lives
    6·2 answers
  • Describe how the fields in the electromagnetic wave move with respect to the motion of the wave?
    8·1 answer
  • Which describes a high frequency wave?
    6·1 answer
  • The expiration date on a product refers to the last date a product should be __________.
    15·2 answers
  • Bob is pulling a 30kg filing cabinet with a force of 200N , but the filing cabinet refuses to move. The coefficient of static fr
    11·1 answer
  • . Inside a conducting sphere of radius 1.2 m, there is a spherical cavity of radius 0.8 m. At the center of the cavity is a poin
    8·1 answer
  • Does Anybody Know The Answers?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!