<span>Correlations allow you to make inferences.</span>
Answer:

Explanation:
This is an exercise where you need to use the concepts of <em>free fall objects</em>
Our <u>knowable variables</u> are initial high, initial velocity and the acceleration due to gravity:



At the end of the motion, the <u><em>rock hits the ground</em></u> making the final high y=0m

If we <em>evaluate the equation</em>:

This is a classic form of <u><em>Quadratic Formula</em></u>, we can solve it using:




Since the <u><em>time can not be negative</em></u>, the <em>reasonable answer</em> is

Answer:
change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
Explanation:
Let's look for the speed of the car
F = m a
a = F / m
We use kinematics to find lips
v = v₀ + a t
v = v₀ + (F / m) t
The moment is defined by
p = m v
The moment change
Δp = m v - m v₀
Let's replace the speeds in this equation
Δp = m (v₀
+ F / m t) - m v₀
Δp = m v₀ + F t - m v₀
Δp = F t
We see that the change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum