For the answer to the question above, <span>ater weights 1000kg per meter cubed. the volume of the pool is part A is 5*4*3 = 60 meters cubed </span>
<span>60*1000 = 60 000kg. the force from this is m*g = 60 000 * 9.81 = 588kN </span>
<span>part B: </span>
<span>volume: 4*4*3 = 48 meters cubed </span>
<span>48 * 1000 = 48000kg </span>
<span>F = 9.81*48000 = 470kN
I hope this helps.</span>
Kb = [HA} [OH-] / [A-] where [A-] represents the concentration of CN- (.068M)
Kb = Kw / Ka = 1 x10-14 / 4.9 x 10-10 = 2 x 10-5
Since this is a salt solution which could be considered to have formed from the neutralization of a strong base (NaOH) and a weak acid (HCN), the Na+ will have no effect on the pH of the solution while the CN- ion will undergo hydrolysis:
CN- + H2O --> HCN + OH-
Based on this equation, the quantities of HCN and OH- produced must be the same and therefore [HCN]=[OH-]. We will set this equal to x.
Plugging into the original equation yields:
2 x 10-5 = x2 / .068 M
Solving for x yields 1.2 x 10-3 whidh is equal to the [OH-]
The pOH then is equal to -log (1.2x10-3) = 2.9
The pH of the solution would be 14 - 2.9 = 11.1
Cyclohex<u>ene</u> is a cyclic, six-membered hydrocarbon that contains one double bond. The types of reactions that can occur in cyclohexene would be those that are typical with alkenes generally.
The pi-bonded electrons in the double bond are nucleophilic. So, electrophilic addition reactions could occur with cyclohexene. For example,
cyclohexene + HBr → bromocyclohexane
cyclohexene + H2O/H+ → cyclohexanol
cyclohexene + Br2 → <em>trans-</em>1,2-dibromocyclohexane (racemic)
The latter is a common test for alkenes where one adds bromine to a sample to see if there is decolorization, which would indicate the presence of nucleophilic pi bonds. Bromine, which is dark reddish-brown, will become clear as it reacts with an alkene to form a colorless haloalkane.
Cyclohexene can also be converted to the fully saturated cyclohexane by hydrogenation: cyclohexene + H2/Pd → cyclohexane.
Answer:
Explanation:
Sonoluminescence is a phenomenon in which small gas bubbles burst to produce light when intense sound wave is introduced. Thus, it can be said that sound energy is converted to light energy here. This is similar to the process of how fire crackers work except that sonoluminescence occurs in a liquid medium while firecrackers work in solid media. In firecrackers, when the tip is lit with fire, the initial explosion is caused by the expansion of some nitrogen and carbon present in some constituent compounds, this explosion produces heat which causes some other constituent chemicals in the firecracker to quickly react and produce light. Thus, this can also be said to convert sound energy to light energy and are thus similar to what occurs in sonoluminescence.