The amount, in mL, of the concentrated acid required, would be 1.1875 mL
<h3>Dilution</h3>
From the dilution equation:
m1v1=m2v2 where m1 and m2 = molarity before and after dilution, and v1 and v2 = volume before and after dilution.
m2 = 0.285M, m1 = 12.0M v2 = 50.0 mL
v1 = m2v2/m1 = 0.285x50/12 = 1.1875 mL
Thus, 1.1875 mL of the acid would be taken and diluted with water up to the 50 mL mark.
More on dilution can be found here: brainly.com/question/13949222
#SPJ1
Answer:
[C₆H₁₂O₆] = 0.139 M
Explanation:
Molarity si defined as a sort of concentration. It indicates the moles of solute that are contained in 1 L of solution.
We can also say, that molarity are the mmoles of solute contained in 1 mL of solution.
For this case, the solute is sugar (glucose). Let's determine M (mmol/mL)
(3.95 g . 1mol / 180g) . (1000 mmol / 1mol) / 158 mL
We determine moles, we convert them to mmoles, we divide by mL
M = 0.139 M
Moles = 3.95 g . 1mol / 180g → 0.0219 mol
We convert mL to L → 158 mL . 1L/1000mL = 0.158L
M = 0.0219 mol / 0.158L = 0.139 M
The equilibrium reaction, causes the water dissociation constant, Kw, is 1.01 × 10-14<span> at 25 °C. That is because every H</span>+<span> (H</span>3O+) ion these forms accompanied by the formation of an OH-<span> ion, are the concentrations of these ions and in pure water the same thing can be calculated from </span>Kw<span>.
HOPED THIS HELP OUT ;)
</span>
Collision with a high-speed particle