Answer:
155.38424 K
2.2721 kg/m³
Explanation:
= Pressure at reservoir = 10 atm
= Temperature at reservoir = 300 K
= Pressure at exit = 1 atm
= Temperature at exit
= Mass-specific gas constant = 287 J/kgK
= Specific heat ratio = 1.4 for air
For isentropic flow

The temperature of the flow at the exit is 155.38424 K
From the ideal equation density is given by

The density of the flow at the exit is 2.2721 kg/m³
If the spaceship's Physicist happens to be hanging out of one side
of the ship, and he measures the speed of the photons as they pass
him and leave the ship, he'll see them passing him at 'c' ... the speed
of light.
When those photons pass somebody who happens to be in their
path, and he decides to measure their speed, he'll see them move
past him at 'c' ... the speed of light.
It doesn't matter whether the observer who measures them is
moving, or at what speed.
And it doesn't matter what source the photons come from, or
whether the source is moving, or at what speed.
And it doesn't matter what the photons' wavelength/frequency is ...
anything from radio to gamma rays.
The photons pass everybody at 'c' ... the speed of light.
Yes, I hear you. That can't be true. It's crazy.
Maybe it's crazy, but it's true.
Answer:
4.02 s
Explanation:
From the question given above, the following data were obtained:
Angle of projection (θ) = 35°
Initial velocity (u) = 50 m/s
Acceleration due to gravity (g) = 10 m/s²
Time of flight (T) =?
The time of flight of the arrow can be obtained as follow:
T = 2uSineθ / g
T = 2 × 35 × Sine 35 / 10
T = 70 × 0.5736 / 10
T = 7 × 0.5736
T = 4.02 s
Therefore, the time taken for the arrow to return is 4.02 s
Answer:
Accelrtation:a vehicle's capacity to gain speed within a short time.EX:An object was moving north at 10 meters per second.
Velociy:the speed of something in a given direction EX:Velocity is the rate of motion, speed or action. An example of velocity is a car driving at 75 miles per hour.
Explanation:
Answer:
The horizontal distance the pumpkin will travel after it slips from the eagle is 17.02 m
Explanation:
Given;
height above the ground, h = 16.4 m
speed of the eagle, v = 9.3 m/s
The time it will take the pumpkin to fall at the given height is calculated as;

The horizontal distance traveled at this time is given by;
x = vt
x = (9.3)(1.83)
x = 17.02 m
Therefore, the horizontal distance the pumpkin will travel after it slips from the eagle is 17.02 m