Answer:
Q=1.42 C
Explanation:
Given that

When t= 0 ,Io = 3 A
τ = Time constant = 0.5 s

We know that

Q=Charge ,I =Current
Q = ∫I.dt
Given that
t= 0 to t= 3τ= 1.5 s
The charge Q

Q=1.42 C
Therefore charge flow conductor will be 1.42 C.
Answer:
In crash one, because the pink soccer ball had more mass, so it would have a stronger force.
Answer:
at T = 0ºC the change of state is from the solid state to the gaseous state
Explanation:
In this exercise we are asked about the changes of state, from the data we will assume that the material is water.
Water can exist in three solid states, liquid and gas, in a graph of pressure ℗ against temperature (T) there is a point called triple at T = 0.01ºC, below this point the curve has two states at high pressure solid and low pressure gas.
As a result of the previous ones at T = 0ºC the change of state is from the solid state to the gaseous state
As a head-up, it is important to notice that a white dwarf only shines thanks to the stored energy and light, because a white dwarf doesn't have any hydrogen left to perform nuclear fusion.
Now the process:
First, the white dwarf accumulates all the extracted matter from its companion, onto its own surface. This extra matter increases the white dwarf's temperature and density.
After a while, the star reaches about 10 million K, so nuclear fusion can begin. The hydrogen that has been "stolen" from the other star and accumulated in the white dwarf's surface it's used for the fusion, dramatically increasing the star's brightness for a short time, causing what we know as a Nova.
As this fuel its quickly burnt out or blown into space, the star goes back to its natural white dwarf state. Since the white dwarf nor the companion star are destroyed in this process, it can happen countless of times during their lifespan.