The cutoff frequency for magnesium is 8.93 x 10¹⁴ Hz.
<h3>What is cutoff frequency?</h3>
The work function is related to the frequency as
W0 = h x fo
where, fo = cutoff frequency and h is the Planck's constant
Given is the work function for magnesium is 3.70 eV.
fo = 3.7 x 1.6 x 10⁻¹⁹ / 6.626 x 10⁻³⁴
fo = 8.93 x 10¹⁴ Hz.
Thus, the cut off frequency is 8.93 x 10¹⁴ Hz.
Learn more about cutoff frequency.
brainly.com/question/14378802
#SPJ1
Answer:
According to Coulomb's Law, the potential energy of two charged particles is directly proportional to the product of the two charges and inversely proportional to the distance between the charges
Explanation:
According to Coulomb's Law, the potential energy of two charged particles is directly proportional to the product of the two charges and inversely proportional to the distance between the charges. Since the potential energy of two charged particles is directly proportional to the product of the two charges, its magnitude increases as the charges of the particles increases. For like charges, the potential energy is positive(the product of the two alike charges must be positive) and since potential energy is inversely proportional to the distance between the charges therefore it decreases as the particles get farther apart . For opposite charges, the potential energy is negative(the product of the two opposite charges must be negative) and since potential energy is inversely proportional to the distance between the two charges, it becomes more negative as the particles get closer together.
Answer:
Acceleration, 
Explanation:
Initial speed of the skater, u = 8.4 m/s
Final speed of the skater, v = 6.5 m/s
It hits a 5.7 m wide patch of rough ice, s = 5.7 m
We need to find the acceleration on the rough ice. The third equation of motion gives the relationship between the speed and the distance covered. Mathematically, it is given by :




So, the acceleration on the rough ice
and negative sign shows deceleration.
Answer:
0.657 seconds
Explanation:
speed of wave= wavelength / time period
so
time period= wavelength / speed
= 4.6/7
=0.657 sec
I'm not sure I completely understand the expression you want evaluated.
It looks like a fraction with the same exact thing in both the numerator and the denominator. A fraction like that always boils down to ' 1 '.