<u>Answer</u>: The mass of the object is 25kg.
The given question deals with Newton's second law of motion and its applications.
<u>Explanation:</u> Given force, F=500N
acceleration, a=20 m/
From Newton's 2nd law of motion , we have
F=ma where m=mass of the object
⇒500=m×20
⇒m=500/20=25
∴ Mass of the object is 25 kg .
<u> </u><u>Reference Link: </u>brainly.com/question/1141170
#SPJ2
The second law states that the total entropy can never decrese over time for an isolated system
If you take a fluid (i.e. air or water) and heat it, the portion that is heated usually expands. The same mass takes up more volume and as a consequence the heated portion becomes less dense than the portion that is<span><span> not heated.</span> </span>
Answer: A <u>Nebula </u>is left behind. A spectacular explosion in which a star ejects most of its mass in a violently expanding cloud of debris.
Hope this helps!
Answer:
This does not violate the conservation of energy.
Explanation:
This does not violate the conservation of energy because the hot body gives energy in the form of heat to the colder body, this second absorbs energy. This will be the case until both bodies reach the same temperature, reaching thermal equilibrium and reducing the transfer of thermal energy. In this way the energy was only transferred from one body to another but the total energy of the system (body 1 plus body 2) will be the same as in the beginning, respecting the principle of conservation of energy or also called the first principle of thermodynamics .
The part of physics that studies these processes is in turn called heat transfer or heat transfer or thermal transfer. Heat transfer occurs whenever there is a thermal gradient or when two systems with different temperatures come into contact. The process persists until thermal equilibrium is reached, that is, until temperatures are equalized. When there is a temperature difference between two objects or regions close enough, the heat transfer cannot be stopped, it can only be slowed down.