Answer:
<em>The slope is:</em>

Step-by-step explanation:
The slope m of a line is calculated using the following formula

Where the points
and
are two points belonging to the straight line
Notice in the graph that the line passes through the points
(0, 2) and (2, -1)
Then the slope is:


9514 1404 393
Answer:
x = 1 or 5
Step-by-step explanation:
The notion of "cross-multiplying" is the idea that the numerator on the left is multiplied by the denominator on the right, and the numerator on the right is multiplied by the denominator on the left. This looks like ...

Then the solution proceeds by eliminating parentheses, and solving the resulting quadratic equation.

_____
<em>Comment on "cross multiply"</em>
Like a lot of instructions in Algebra courses, the idea of "cross multiply" describes <em>what the result looks like</em>. It doesn't adequately describe how you get there. The <em>one and only rule</em> in solving Algebra problems is "<em>whatever is done to one side of the equation must also be done to the other side of the equation</em>." If you multiply one side by one thing and the other side by a different thing, you are violating this rule.
What looks like "cross multiply" is really "<em>multiply by the product of the denominators</em> and cancel like terms from numerator and denominator." Here's what that looks like with the intermediate steps added.

Step-by-step explanation:
Explanation:
The trick is to know about the basic idea of sequences and series and also knowing how i cycles.
The powers of i will result in either: i, −1, −i, or 1.
We can regroup i+i2+i3+⋯+i258+i259 into these categories.
We know that i=i5=i9 and so on. The same goes for the other powers of i.
So:
i+i2+i3+⋯+i258+i259
=(i+i5+⋯+i257)+(i2+i6+⋯+i258)+(i3+i7+⋯+i259)+(i4+i8+⋯+i256)
We know that within each of these groups, every term is the same, so we are just counting how much of these are repeating.
=65(i)+65(i2)+65(i3)+64(i4)
From here on out, it's pretty simple. You just evaluate the expression:
=65(i)+65(−1)+65(−i)+64(1)
=65i−65−65i+64
=−65+64
=−1
So,
i+i2+i3+⋯+i258+i259=-1
<span>4000 so the answer is C
Hope this helps</span>
Four Hundred Ninety two thousand Fifty Three.