Answer:
Not C, Not A, most likely B
Step-by-step explanation:
Its less than 90 because its and acute, meaning its smaller, so you can already knock off C.
Answer:
126
Step-by-step explanation:
A line is 180 degrees. I found the degree of the angles in-between 126 and M by subtracting 126 from 180. This means that M is also 126. (Plus the intersecting lines are parallel)
The equation that shows the correct relationship between the measures of the angles of the two triangles is;
Option D: The measure of angle BCA = The measure of angle C prime A prime B prime
<h3>How to Interpret Objects Transformation?</h3>
We are told that Triangle ABC is transformed to triangle A′B′C′.
Now, the triangle ABC and A'B'C' are similar triangles and we know that similar triangles angles are congruent. Thus;
From the given coordinates, we can say that;
∠BAC = ∠B'A'C'
∠ABC = ∠A'B'C'
∠ACB = ∠A'C'B'
Thus, the equation that shows the correct relationship between the measures of the angles of the two triangles is;
The measure of angle BCA = The measure of angle C prime A prime B prime
Read more about Objects Transformation at; brainly.com/question/2512124
#SPJ1
Answer:
(8, 2 )
Step-by-step explanation:
Given the 2 equations
x + 4y = 16 → (1)
- x + 3y = - 2 → (2)
Adding the 2 equations term by term will eliminate the x- term
0 + 7y = 14
7y = 14 ( divide both sides by 7 )
y = 2
Substitute y = 2 into either of the 2 equations and solve for x
Substituting into (1)
x + 4(2) = 16
x + 8 = 16 ( subtract 8 from both sides )
x = 8
solution is (8, 2 )
Answer:
See below
Step-by-step explanation:
![9.( {m}^{3} {n}^{5} )^{ \frac{1}{4} } \\ = m^{\frac{3}{4}}n^{\frac{5}{4}}\\ \\ 10. \sqrt[5]{ \sqrt[4]{x} } \\ = \sqrt[5]{ {x}^{ \frac{1}{4} } } \\ = {( {x}^{ \frac{1}{4} } )}^{ \frac{1}{5} } \\ = {x}^{ \frac{1}{4} \times \frac{1}{5} } \\ = {x}^{ \frac{1}{20} } \\ \\ \sqrt[5]{ \sqrt[3]{ {a}^{2} } } \\ = \sqrt[5]{ {a}^{ \frac{2}{3} } } \\ = {( {a}^{ \frac{2}{3} } )}^{ \frac{1}{5} } \\ = {a}^{ \frac{2}{3} \times \frac{1}{5} } \\ = {a}^{ \frac{2}{15} }](https://tex.z-dn.net/?f=9.%28%20%7Bm%7D%5E%7B3%7D%20%20%7Bn%7D%5E%7B5%7D%20%29%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%20%20%5C%5C%20%20%20%3D%20%20m%5E%7B%5Cfrac%7B3%7D%7B4%7D%7Dn%5E%7B%5Cfrac%7B5%7D%7B4%7D%7D%5C%5C%20%20%5C%5C%2010.%20%5Csqrt%5B5%5D%7B%20%5Csqrt%5B4%5D%7Bx%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B5%5D%7B%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B%28%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%20%3D%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B20%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%5Csqrt%5B5%5D%7B%20%5Csqrt%5B3%5D%7B%20%7Ba%7D%5E%7B2%7D%20%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B5%5D%7B%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B%28%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%20%3D%20%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B15%7D%20%7D%20%20)