Answer: 
Explanation:
Given
Cross-sectional area of wire 
Extension of wire 
Extension in a wire is given by

where, 

for same force, length and material

Divide (i) and (ii)

Spring tides occur when the moon is either new or full, and the sun, the moon, and the Earth are aligned. ... neap tide- A tide in which the difference between high and low tide is the least. Neap tides occur twice a month when the sun and moon are at right angles to the Earth.
The emf induced in the second coil is given by:
V = -M(di/dt)
V = emf, M = mutual indutance, di/dt = change of current in the first coil over time
The current in the first coil is given by:
i = i₀
i₀ = 5.0A, a = 2.0×10³s⁻¹
i = 5.0e^(-2.0×10³t)
Calculate di/dt by differentiating i with respect to t.
di/dt = -1.0×10⁴e^(-2.0×10³t)
Calculate a general formula for V. Givens:
M = 32×10⁻³H, di/dt = -1.0×10⁴e^(-2.0×10³t)
Plug in and solve for V:
V = -32×10⁻³(-1.0×10⁴e^(-2.0×10³t))
V = 320e^(-2.0×10³t)
We want to find the induced emf right after the current starts to decay. Plug in t = 0s:
V = 320e^(-2.0×10³(0))
V = 320e^0
V = 320 volts
We want to find the induced emf at t = 1.0×10⁻³s:
V = 320e^(-2.0×10³(1.0×10⁻³))
V = 43 volts
The magnetic field is described mathematically as a vector field<span>. This vector field can be plotted directly as a set of many vectors drawn on a grid. Each vector points in the direction that a compass would point and has length dependent on the strength of the magnetic force. </span>
Answer:
(a) the force is 8.876 N
(b) the magnitude of each charge is 4.085 μC
Explanation:
Part (a)
Given;
coulomb's constant, K = 8.99 x 10⁹ N.m²/C²
distance between two charges, r = 10 cm = 0.1 m
force between the two charges, F = 15 N
when the distance between the charges changes to 13 cm (0.13 m)
force between the two charges, F = ?
Apply Coulomb's law;

Part (b)
the magnitude of each charge, if they have equal magnitude

where;
F is the force between the charges
K is Coulomb's constant
Q is the charge
r is the distance between the charges
