Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.
True
In fact, the weight of an object on the surface of the Earth is given by:

where m is the mass of the object and

is the gravitational acceleration on Earth's surface. If we use the mass of the object, m=3.0 kg, we find
Storing music digitally requires less storage room than analog records or tapes. Digital music is easier to copy and the copies are the same as the original. The quality of the signal does not degrade over long periods of time.
Answer:
The current will be increased and also for the resistance.
Explanation:
The analysis of a direct current circuit can give us the explanation we need. Using the ohm law, which tells us that the voltage is equal to the product of the current by the resistance we have:
![V=I*R\\where\\V= voltage [V]\\I= amperes [amp]\\R=resistance [ohm]\\](https://tex.z-dn.net/?f=V%3DI%2AR%5C%5Cwhere%5C%5CV%3D%20voltage%20%5BV%5D%5C%5CI%3D%20amperes%20%5Bamp%5D%5C%5CR%3Dresistance%20%5Bohm%5D%5C%5C)
The voltage is equal to the potential difference therefore we will have these expressions:

If we increase the potential differential or circuit voltage, the current will also increase and so does the resistance by increasing the voltage. If we put numerical values in the equation given before, we can confirm this fact.
The correct answer is Option (C) distance and time
Explanation:
Average speed of any object is defined as the total distance that object travels over the time it takes to travel that distance. In other words, average speed is the total distance divided by the elapsed time.

Therefore, as you can see in the above equation, the two measurements that are essential for the calculation of the average speed are the (total) distance and the (elapsed) time.
Hence, the correct option is C.