Answer:
force on the wire of section cm will be 
Direction of force on the wire will be in south direction
Explanation:
We have given current in the wire i = 1 A
Magnetic field strength B = 0.6 T
We have to find the force on 1 cm section of the wire so l = 1 cm = 0.01 m
Force on the wire containing current is equal to


So force on the wire of section cm will be 
Direction of force on the wire will be in south direction
Answer:
n = 1.4266
Explanation:
Given that:
refractive index of crystalline slab n = 1.665
let refractive index of fluid is n.
angle of incidence θ₁ = 37.0°
Critical angle 

According to Snell's law of refraction:

At point P ; 

Therefore:

Then maximum value of refractive index n of the fluid is:


n = 1.4266
Answer:
Efriction = 768.23 [kJ]
Explanation:
In order to solve this problem we must use the principle of energy conservation. Where it tells us that the energy of a system plus the work applied or performed by that system, will be equal to the energy in the final state. We have two states the initial at the time of the balloon jump and the final state when the parachutist lands.
We must identify the types of energy in each state, in the initial state there is only potential energy, since the reference level is in the ground, at the reference point the potential energy is zero. At the time of landing the parachutist will only have potential energy, since it reaches the reference level.
The friction force acts in the opposite direction to the movement, therefore it will have a negative sign.

where:

m = mass = 56 [kg]
h = elevation = 1400 [m]
v = velocity = 5.6 [m/s]
![(56*9.81*1400)-E_{friction}=\frac{1}{2}*56*(5.6)^{2}\\769104 -E_{friction}= 878.08 \\E_{friction}=769104-878.08\\E_{friction}=768226[J] = 768.23 [kJ]](https://tex.z-dn.net/?f=%2856%2A9.81%2A1400%29-E_%7Bfriction%7D%3D%5Cfrac%7B1%7D%7B2%7D%2A56%2A%285.6%29%5E%7B2%7D%5C%5C769104%20-E_%7Bfriction%7D%3D%20878.08%20%5C%5CE_%7Bfriction%7D%3D769104-878.08%5C%5CE_%7Bfriction%7D%3D768226%5BJ%5D%20%3D%20768.23%20%5BkJ%5D)
Answer:
F=(-4.8*10^22,0,0) N
Explanation:
<u>Given :</u>
We are given the magnitude of the momentum of the planet and let us call this momentum (p_now) and it is given by p_now = 2.60 × 10^29 kg·m/s. Also, we are given the force exerted on the planet F = 8.5 × 10^22 N. and the angle between the planet and the star is Ф = 138°
Solution :
We are asked to find the parallel component of the force F The momentum here is not constant, where the planet moving along a curving path with varying speed where the rate change in momentum and the force may be varying in magnitude and direction. We divide the force here into two parts: a parallel force F to the momentum and a perpendicular force F' to the momentum.
The parallel force exerted to the momentum will speed or reduce the velocity of the planet and does not change its moving line. Let us apply the direction cosines, we could obtain the parallel force as next
F=|F|cosФp (1)
Where the parallel force F is in the opposite direction of p as the angle between them is larger than 90°. Now we can plug our values for 0 and I F I into equation (1) to get the parallel force to the planet
F=|F|cosФp
=-4.8*10^22 N*p
<em>As this force is in one direction, we could get its vector as next </em>
F=(-4.8*10^22,0,0) N
F=(0,-4.8*10^22,0) N
F=(0,0-4.8*10^22) N
The cosine of 138°, the angle between F and p is, is a negative number, so F is opposite to p. The magnitude of the planet's momentum will decrease.
The answer is 40 kg. m/s.
Formula for momentum:
p=mv
p=(10 kg.)(4 m/s)
So, therefore, the final answer is p=40 kg. m/s.
I hope this helped answer your question. Enjoy your day, and take care!