Energy is the one that is stored in the ball when it drops. Just before it hits the ground, the energy depends on the mass of the ball and its velocity. When the ball hits, it is compressed and the energy is stored in the compression of the air in the ball and the elasticity of the material that the ball is made from. Some is also converted to heat. The stored energy in the ball causes a force to make the ball back into a round shape and this force presses against the propels and floor the ball back up. The small amount lost as heat is the reason that the ball bounces up with less energy than when it hit.
No. Mechanical energy is not conserved. There's quite a bit of friction on the slide. So some of the potential energy is lost to heat on the way down, and the child arrives at the bottom with hot pants and less kinetic energy than you might expect.
Answer:
2.72 km
Explanation:
(12.33 km)/ 1 hr * (1 hr)/ 60 min
0.2055 km/ min
distance=rate * time (assuming v is constant,
a=0)
(0.2055 km/ min)*(13.22 min)
2.72 km OR 2716.71 m
Answer:
4.4 seconds
Explanation:
Given:
a = -5.5 m/s²
v₀ = 0 m/s
y₀ = 53 m
y = 0 m
Find: t
y = y₀ + v₀ t + ½ at²
0 = 53 + 0 + ½ (-5.5) t²
0 = 53 − 2.75 t²
t = 4.39
Rounded to two significant figures, it takes 4.4 seconds for the object to land.