<u>Answer:</u> The entropy change of the process is 
<u>Explanation:</u>
To calculate the entropy change for different phase at same temperature, we use the equation:

where,
= Entropy change
n = moles of acetone = 6.3 moles
= enthalpy of fusion = 5.7 kJ/mol = 5700 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the system = ![-94.7^oC=[273-94.7]=178.3K](https://tex.z-dn.net/?f=-94.7%5EoC%3D%5B273-94.7%5D%3D178.3K)
Putting values in above equation, we get:

Hence, the entropy change of the process is 
Answer:
The answer is 1.61 × 10²³ atoms
Explanation:
To determine number of atoms, we will use the formula below
Number of atoms = number of moles (n) × avogadro's constant (6.02 x 10²³)
n was not provided, hence we will solve for n
n = mass/ molar mass
molar mass of carbon monoxide, CO (where C is 12 and O is 16) is 12 + 16 = 28
mass was provided in the question as 7.48
n = 7.48/28
n = 0.267
Hence,
number of atoms = 0.267 × 6.02 x 10²³
= 1.61 × 10²³ atoms
Molar mass of water 18g/mol
Number of mols = 50.0g/18g/mol =2.78 mol
Heat absorbed = 40.7 kj/mol * 2.78 mol = 113.1 kj.
The percentage composition of this compound : 40%Ca, 12%C and 48%O
<h3>Further explanation</h3>
Given
20.0 g of calcium,
6.0 g of carbon,
and 24.0 g of oxygen.
Required
The percentage composition
Solution
Total mass of compound :
=mass calcium + mass carbon + mass oxygen
=20 g + 6 g + 24 g
=50 g
Percentage composition :



they all have one thing in common and that its all made up of atoms. When these components are active it creates energy