Answer:
e) 120m/s
Explanation:
When the ball reaches its highest point, its velocity becomes zero, meaning
.
where
is the initial velocity.
Solving for
we get
which is the time it takes the ball to reach the highest point.
Now, after the ball has reached its highest point, it turns around and falls downwards. After time
since it had reached the highest point, the ball has traveled downwards and the velocity
it has gained is
,
and we are told that this is twice the initial velocity
; therefore,

which gives

Thus, the total time taken to reach velocity
is


This
, we are told, is 36 seconds; therefore,

and solving for
we get:



which from the options given is choice e.
Question 1: C Question 2: B, Hope this Helps!
Answer:
(a) 1 : 2
(b) same
Explanation:
Let the mass of puck A is m and the mass of puck B is 2 m.
initial speed for both the pucks is same as u and the distance is same for both is s.
let the tension is T for same.
The kinetic energy is given by

(a) As the speed is same, so the kinetic energy depends on the mass.
So, kinetic energy of A : Kinetic energy of B = m : 2m = 1 : 2
(b) A the distance s same so the final velocities are also same.
A) 
Let's start by writing the equation of the forces along the directions parallel and perpendicular to the incline:
Parallel:
(1)
where
m is the mass
g = 9.8 m/s^2 the acceleration of gravity

is the coefficient of friction
R is the normal reaction
a is the acceleration
Perpendicular:
(2)
From (2) we find

And substituting into (1)

Solving for a,

B) 5.94 m/s
We can solve this part by using the suvat equation

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the displacement
Here we have
v = ?
u = 0 (it starts from rest)

s = 8.70 m
Solving for v,

Which best describes the transition from gas to liquid?
gas is @ higher energy state than liq. so the transition must remove energy. so ans is a. Energy must be removed because particles in liquid move more slowly.