The molarity of a Ba(OH)2 solution required to prepare a1.0 OH- solution is calculated as follows
write the equation for dissociation of Ba(Oh)2
that is,
Ba(Oh)2 -----> Ba^2+ + 2Oh-
by use of reacting ratio between Ba(Oh)2 to Oh which is 1:2 the molarity of Ba(oh)2 = 1.0/2 = 0.5 M
Answer:
See explanation
Explanation:
In this question, we have to follow the IUPAC rules. Lets analyze each compound:
a. 1-methylbutane
In this compound we have a chain of 5 carbons, so the correct name is <u>Pentane.</u>
b. 1,1,3-trimethylhexane
In this compound, we longest chain is made of 7 carbons, so, we have to use the name "heptane". Carbon one would be the closet one to the methyl group, so the correct name is <u>2,4-dimethylheptane.</u>
c. 5-octyne
In this case, carbon 1 would be the closet one to the triplet bond. With this in mind, the correct name is <u>oct-3-yne.</u>
d. 2-ethyl-1-propanol
In this compound, we longest chain is made of 4 carbons, so, we have to use the name "butane". Carbon one would be the carbon with the "OH" group, so the correct name is <u>2-methylbutan-1-ol.</u>
<u>e. 2.2-dimethyl-3-butanol</u>
In this case, carbon 1 would be the closet one to the "OH". With this in mind, the correct name is <u>3,3-dimethylbutan-2-ol.</u>
See figure 1
I hope it helps!
Pretty sure it's b but not an definitely
<span>The </span>abundance of a chemical element<span> is a measure of the </span>occurrence<span> of the </span>element<span> relative to all other elements in a given environment. Abundance is measured in one of three ways: by the </span>mass-fraction<span> (the same as weight fraction); by the </span>mole-fraction<span> (fraction of atoms by numerical count, or sometimes fraction of molecules in gases); or by the </span>volume-fraction<span>. Volume-fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole-fraction for gas mixtures at relatively low densities and pressures, and </span>ideal gas<span> mixtures. Most abundance values in this article are given as mass-fractions.
</span>