The symbolic representation of its compound and its composition.
or a chemical formula that indicates the kinds of atoms and the number of each kind in a molecule of a compound.
ANSWER IS B
Answer: Option (C) is the correct answer.
Explanation:
In a substance, the total energy of its molecular motion is known as heat. Whereas when we measure the average energy of molecular motion of a substance then it is known as temperature.
So, any increase or decrease in temperature will lead to change in heat of a substance.
When one mole of a substance is burned then the amount of energy released in the form of heat is known as heat of combustion.
Relation between heat and temperature is as follows.
q = 
Thus, we can conclude that to measure the enthalpy of combustion it cannot be measured, only calculated using the equation; q =
.
Answer: There are
molecules
gas are in 756.2 L.
Explanation:
It is known that 1 mole of any gas equals 22.4 L at STP. Hence, number of moles present in 756.2 L are calculated as follows.

According to mole concept, 1 mole of every substance contains
molecules.
Therefore, molecules of S present in 33.76 moles are calculated as follows.

Thus, we can conclude that there are
molecules
gas are in 756.2 L.
If you are talking about just pure regular water, the answer is false. BUT, some salts dissolved IN WATER, can act as electrolytes. But regular water, no.
Answer:
c. can have a large cumulative effect
Explanation:
Noncovalent interactions between molecules are weaker than covalent interactions. Noncovalent interactions between molecules are of various types which include van der Waals forces, hydrogen bonding, and electrostatic interactions or ionic bonding.
van der Waals forces are weak interactions found in all molecules. They include dipole-dipole interactions - formed due to the differences in the electronegativity of atoms - and the London dispersion forces.
Hydrogen Bonds results when electrons are shared between hydrogen and a strongly electronegative atoms like fluorine, nitrogen, oxygen. The hydrogen acquires a partial positive charge while the electronegative atom acquires a partial negative. This results in attraction between hydrogen and neighboring electronegative molecules.
Ionic bonds result due to the attraction between groups with opposite electrical charges, for example in common salt between sodium and chloride ions.
Even though these noncovalent interactions are weak, cumulatively, they exert strong effect. For example, the high boiling point of water and the crystal structure of ice are due to hydrogen bonding.