Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases.
-google
its probably 40
Answer:
Hydrogen bonding occurs when a hydrogen atom is covalently bonded to an NN, OO, or FF atom.
A hydrogen atom acquires a partial positive charge when it is covalently bonded to an FF atom.
A hydrogen bond is possible with only certain hydrogen-containing compounds.
Explanation:
A hydrogen bond does not occur in all hydrogen containing compounds. Hydrogen bonds only occur in those compounds where hydrogen is bonded to a highly electronegative element such as fluorine, oxygen or nitrogen.
In a hydrogen bonded specie, hydrogen acquires a partial positive charge and the electronegative element acquires a partial negative charge which extends throughout the molecule.
Answer:

Explanation:
Given:
Pressure = 745 mm Hg
Also, P (mm Hg) = P (atm) / 760
Pressure = 745 / 760 = 0.9803 atm
Temperature = 19 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (19 + 273.15) K = 292.15 K
Volume = 0.200 L
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9803 atm × 0.200 L = n × 0.0821 L.atm/K.mol × 292.15 K
⇒n = 0.008174 moles
From the reaction shown below:-

1 mole of
react with 2 moles of 
0.008174 mole of
react with 2*0.008174 moles of 
Moles of
= 0.016348 moles
Volume = 13.4 mL = 0.0134 L ( 1 mL = 0.001 L)
So,



Half life is the time taken for a radioactive isotope to decay by half its original mass. In this case the half life of carbon-14 is 5.730 years.
Using the formula;
New mass = original mass × (1/2)^n; where n is the number of half lives (in this case n=1 )
New mass = 2 g × (1/2)^1
= 1 g
Therefore; the mass of carbon-14 that remains will be 1 g
Some of the reactants or the products are in the gaseous phase.