The formula we're gonna use for this problem is written below:
ΔG°= nFE°
where
n is number of mol electrons displaced in the reaction
F is Faraday's constant = 96,500 C/mol e
E° is the standard emf
ΔG° = (2)(96,500)(1.46) = <em>281,780 Joules</em>
Answer:
The strongest force that exists between molecules of Ammonia is <em>Hydrogen Bonding</em>.
Explanation:
Hydrogen Bond Interactions are those interactions which are formed between a partial positive hydrogen atom bonded directly to most electronegative atoms (i.e. F, O and N) of one molecule interacts with the partial negative most electronegative atom of another molecule.
Hence, in ammonia the nitrogen atom being more electronegative element than Hydrogen will be having partial negative charge and making the hydrogen atom partial positive. Therefore, the attraction between these partials charges will be the main force of interaction between ammonia molecules.
Other than Hydrogen bonding interactions ammonia will also experience dipole-dipole attraction and London dispersion forces.
Explanation:
In a magnetic field, the radius of the charged particle is as follows.
r = 
where, m = mass, v = velocity
q = charge, B = magnetic field
Therefore, q will be calculated as follows.
q = 
= 
= 
= 
= +2e
Thus, we can conclude that the charge of the ionized atom is +2e.
Answer is: both reactions
are exothermic.
<span>
In exothermic reactions, heat is released and enthalpy of reaction is less than
zero (as it show second chemical reaction).
According to Le Chatelier's principle when the reaction
is exothermic heat is included as a product (as it show first
chemical reaction).</span>
The focal length, like you said it's the distance between the FOCAL point and the mirror.
Hope this helps.... :)