Answer:
36.55kJ/mol
Explanation:
The heat of solution is the change in heat when the KNO3 dissolves in water:
KNO3(aq) → K+(aq) + NO3-(aq)
As the temperature decreases, the reaction is endothermic and the molar heat of solution is positive.
To solve the molar heat we need to find the moles of KNO3 dissolved and the change in heat as follows:
<em>Moles KNO3 -Molar mass: 101.1032g/mol-</em>
10.6g * (1mol/101.1032g) = 0.1048 moles KNO3
<em>Change in heat:</em>
q = m*S*ΔT
<em>Where q is heat in J,</em>
<em>m is the mass of the solution: 10.6g + 251.0g = 261.6g</em>
S is specififc heat of solution: 4.184J/g°C -Assuming is the same than pure water-
And ΔT is change in temperature: 25°C - 21.5°C = 3.5°C
q = 261.6g*4.184J/g°C*3.5°C
q = 3830.87J
<em>Molar heat of solution:</em>
3830.87J/0.1048 moles KNO3 =
36554J/mol =
<h3>36.55kJ/mol</h3>
<em />
1 mole has 6.02*10^23 molecules in it.
1 nickel (II) chloride molecule, NiCl2, has 1 Ni atom in it.
so 1 mole of nickel (II) chloride molecule has 1 mole of Ni atom in it.
so 100 moles of nickel (II) chloride molecule has 100*6.02*10^23
= 6.02*10^25 Ni atom in it.
Answer:
The answer to your question is: letter c (96%)
Explanation:
Indium -113 (112-9040580 amu) ₁₁₃In
Indium-115 (114.9038780 amu) ₁₁₅In
Atomic mass of Indium is 114.82 amu ₁₁₄.₈₂In
Formula
Atomic mass = m₁(%₁) +m₂(%₂) / 100
%₁ = x I established this is an equation
%₂ = 100 - x
Substituting values
114.82 = 112.8040x + 114.9039(100-x) /100 and know we expand and simplify
114.82 = 112.8040x + 11490.39 - 114.9039x /100
11482 = 112.8040x -114.9039x +11490.39
11482 - 11490.39 = 112.8040x -114.9039x
-8.39 = -2.099x
x = 3.99
Then % of Indium-115 = 100 - 3.99 = 96