Answer:
Water has 18 grams per mole so 9 grams is 0.5 moles of water. There are 6.022* 10^23 molecules in a mole. Each water molecule contains one oxygen and two hydrogens.
For the answer to the question above asking, h<span>ow many moles of glucose (C6H12O6) are in 1.5 liters of a 4.5 M C6H12O6 solution?
The answer to your question is the the third one among the given choices which is 6.8 mol.
</span><span>moles glucose = 1.5 x 4.5 = 6.8 </span>
Answer: 0.52V
Explanation:
Ecell = Ecell(standard) - [(0.0592 logQ)/n]
Q = product of the quotient
n = no of electrons transferred = 2
Ecell = 0.63 - [(0.0592*Log(1 / 2.0 * 10-4) / 2]
Ecell = 0.63 - 0.0194
Ecell = 0.5205V
The original concentration of the acid solution is 6.175
10^-4 mol / L.
<u>Explanation:</u>
Concentration is the ratio of solute in a solution to either solvent or total solution. It is expressed in terms of mass per unit volume
HBr + NaOH -----> NaBr + H2O
There is a 1:1 equivalence with acid and base.
Moles of NaOH = 72.90
10^-3
0.25
= 0.0182 mol.
[ HBr ] = moles of base / volume of a solution
= 0.0182 / 29.47
= 6.175
10^-4 mol / L.
<span>This is not the case in the hydrocarbon tail. The electronegativity of hydrogen and carbon are very similar, so the electron cloud is distributed evenly over the two atoms. Carbon-hydrogen bonds are said to be non-polar because they do not have positive and negative poles within themselves. Hope this helps. </span>