The nuclei of atoms also contain neutrons, which help hold the nucleus together. ... The total weight of an atom is called the atomic weight. It is approximately equal to the number of protons and neutrons, with a little extra added by the electrons.
The mass of a given atom, measured on a scale in which the hydrogen atom has the weight of one. Because most of the mass in an atom is in the nucleus, and each proton and neutron has an atomic weight near one, the atomic weight is very nearly equal to the number of protons and neutrons in the nucleus.
Answer:
Part A. The half-cell B is the cathode and the half-cell A is the anode
Part B. 0.017V
Explanation:
Part A
The electrons must go from the anode to the cathode. At the anode oxidation takes place, and at the cathode a reduction, so the flow of electrons must go from the less concentrated solution to the most one (at oxidation the concentration intends to increase, and at the reduction, the concentration intends to decrease).
So, the half-cell B is the cathode and the half-cell A is the anode.
Part B
By the Nersnt equation:
E°cell = E° - (0.0592/n)*log[anode]/[cathode]
Where n is the number of electrons being changed in the reaction, in this case, n = 2 (Sn goes from S⁺²). Because the half-reactions are the same, the reduction potential of the anode is equal to the cathode, and E° = 0 V.
E°cell = 0 - (0.0592/2)*log(0.23/0.87)
E°cell = 0.017V
Answer:
D.) Br
Explanation:
I don’t really have an explanation.
I hope this helps!
Visual representation of covalent bonding indicating the valence shell electrons in the molecule, lines represents the shared pair of electron and pair of electrons that are not involved in bonding are represented as dots(lone pairs) are known as Lewis structures.
Compound formation takes place in order to complete the octet of each element that is according to octet rule, each atom forms bond with other atom in order to complete their octet that is to get eight electrons in its valence shell and attain stability.
An organic compound of the form
is known as ketene.
The given ketene is
.
The number of valence electron of:



The number of valence electrons in
= 
2 electrons are involved in each single bond between carbon and hydrogen and 4 electrons are involved in each double bond formed between carbon-carbon and carbon-oxygen. Hence, the total number of electrons involved in bond formation are 12 and rest 2 pair of electrons are present on oxygen as lone pair of electrons.
Therefore, the attached image is the Lewis structure of
.