Answer:
The answer is option 3.
Explanation:
When salt is added to the water, the boiling point increases because it needs to take in more energy from heat to <u>b</u><u>r</u><u>e</u><u>a</u><u>k</u><u> </u><u>d</u><u>o</u><u>w</u><u>n</u> the bonds and dissolve the salt in the water.
(Correct me if I am wrong)
This element is found in group 3A, period 3
<h3>Further explanation
</h3>
The maximum number of electrons that can be filled in the nth electron shell is 2n²(n=shell)
-
K shell (n = 1) maximum 2 x 1² = 2 electrons
- L shell (n = 2) maximum 2 x 2² = 8 electrons
- M shell (n = 3) maximum 2 x 3² = 18 electrons
- N shell (n = 4) maximum 2 x 4² = 32 electrons
Electron configuration of element X : 2.8.3 , so :
K shell = 2 ⇒1s²
L shell = 8⇒2s²2p⁶
M shell = 3⇒ 3s²3p¹
Block p: group 13-18 (has a 2p-6p configuration), also called a representative element because it includes metals, non-metals and metalloids
The outer shell 3s²3p¹ : located in group 3A and period 3
group⇒valence electron ⇒3
period⇒the greatest value of the quantum number n⇒3
<span>The formation of a derivative being a necessary step in the experiment lies in the importance of the derived structure. Often the derived product confers to reaction pathways which uses less reactive starting materials and more easily proceeds to completion. This also allows us to take a small amount of sample. The derived product at times is a general compound allowing its easy analysis. Often we encounter a product but we find it difficult to analyse it in ways we want. Here lies the essence of forming a derivative which often are simpler compounds allowing easier analysis yet having similar functional groups and structural properties. Also sometimes we encounter problems when our desired product is unstable and forms stable degraded products. But if we somehow manage to synthesize a derivative it may be relatively stable and form no degradation products. It would be stable at least for a significant period of time making it easier to study its properties. The derived product also at times are synthesized using general reaction pathways facilitating a way of easier synthesis and helping it to correlate with other similar reaction pathways and products.So the above paragraph accounts for the need of derivatives. When we encounter problems similar to those mentioned above it becomes necessary for a researcher to form rather synthesize a derivative.</span>
Answer:
<h3><em>Calcium carbonate is heated strongly until it undergoes thermal decomposition to form calcium oxide and carbon dioxide. The calcium oxide (unslaked lime) is dissolved in water to form calcium hydroxide (limewater). Bubbling carbon dioxide through this forms a milky suspension of calcium carbonate.</em></h3>
<em />