1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tangare [24]
3 years ago
9

A dentist’s drill starts from rest. After 1.46 sof constant angular acceleration, it turns at arate of 27000 rev/min.Find the dr

ill’s angular acceleration.Answer in units of rad/s2.
Physics
1 answer:
Black_prince [1.1K]3 years ago
4 0

Answer:

616.3 rad/s²

Explanation:

Given that

t= 1.46 s

Initial angular velocity ,ωi = 0 rad/s

Final angular velocity ωf= 27000 rev/min

Angular speed in the rad/s given as

\omega_f=\dfrac{2\pi N}{60}\ rad/s

Now by putting the values

\omega_f=\dfrac{2\times 27000}{60}\ rad/s

ωf=900 rad/s

We know that (if acceleration is constant)

ωf=ωi + α t

α=Angular acceleration

900 = 0 + α x 1.46

\alpha=\dfrac{900}{1.46}\ rad/s^2\\\alpha=616.43\ rad/s^2

Therefore the acceleration will be 616.3 rad/s²  

You might be interested in
Each corner of a right-angled triangle is occupied by identical point charges "A", "B", and "C" respectively. Draw a sketch of t
NISA [10]

Answer:

Fnet = F√2

Fnet = kq²/r² √2

Explanation:

A exerts a force F on B, and C exerts an equal force F on B perpendicular to that.  The net force can be found with Pythagorean theorem:

Fnet = √(F² + F²)

Fnet = F√2

The force between two charges particles is:

F = k q₁ q₂ / r²

where

k is Coulomb's constant, q₁ and q₂ are the charges, and r is the distance between the charges.

If we say the charge of each particle is q, then:

F = kq²/r²

Substituting:

Fnet = kq²/r² √2

5 0
3 years ago
What is the average velocity of a car that travels 30 kilometers due wet in 0.50
rodikova [14]

Answer:

60km/hr west

Explanation:

When you are dealing with velocity you always name the direction its going in

3 0
3 years ago
PLEASEE HELPP
topjm [15]

Explanation:

u=166m/s, v=0(at it's highest point final velocity is zero), a=9.8m/s², t=8.6s

by the formula, S=ut+½at².

S=[166×8.6+½.×9.8×(8.6)²]. ...by calculation

S = 1427.6+362.404

S=1790.004m

hope this helps you.

4 0
2 years ago
A circuit is set up such that it has a current of 8 A. What would be the new current if the resistance was increased by a factor
RUDIKE [14]

Answer:

4 A

Explanation:

The relationship between current, voltage and resistance in a circuit is given by Ohm's law:

V=RI

where

V is the voltage

R is the resistance

I is the current

The equation can also be rewritten as

I=\frac{V}{R}

from which we see that the current is inversely proportional to the resistance, R.

In this problem, the initial current is I = 8 A. Then the resistance is doubled:

R ' = 2R

So the new current is

I'=\frac{V}{R'}=\frac{V}{2R}=\frac{1}{2}(\frac{V}{R})=\frac{I}{2}=4 A

so the current is halved.

7 0
3 years ago
A hollow cylinder that is rolling without slipping is given a velocity of 5.0 m/s and rolls up an incline to a vertical height o
inysia [295]

Answer:

The hollow cylinder rolled up the inclined plane by 1.91 m

Explanation:

From the principle of conservation of mechanical energy, total kinetic energy = total potential energy

M.E_T = \frac{1}{2}mv^2 + \frac{1}{2} I \omega^2 + mgh

The total energy at the bottom of the inclined plane = total energy at the top of the inclined plane.

\frac{1}{2}mv_i^2 + \frac{1}{2} I \omega_i^2 + mg(0) =  \frac{1}{2}mv_f^2 + \frac{1}{2} I \omega_f^2 + mgh

moment of inertia, I, of a hollow cylinder = ¹/₂mr²

substitute for I in the equation above;

\frac{1}{2}mv_i^2 + \frac{1}{2} (\frac{1}{2}mr^2  \omega_i^2) =  \frac{1}{2}mv_f^2 + \frac{1}{2} (\frac{1}{2}mr^2  \omega_f^2) + mgh\\\\ but \ v = r \omega\\\\\frac{1}{2}mv_i^2 + \frac{1}{2} (\frac{1}{2}m v_i^2  ) =  \frac{1}{2}mv_f^2 + \frac{1}{2} (\frac{1}{2}m v_f^2) + mgh\\\\\frac{1}{2}mv_i^2 +\frac{1}{4}mv_i^2 = \frac{1}{2}mv_f^2 +\frac{1}{4}mv_f^2 +mgh\\\\\frac{3}{4}mv_i^2 = \frac{3}{4}mv_f^2 +mgh\\\\mgh = \frac{3}{4}mv_i^2 -  \frac{3}{4}mv_f^2\\\\gh = \frac{3}{4}v_i^2 -  \frac{3}{4}v_f^2\\\\

h = \frac{3}{4g}(v_1^2 -v_f^2)

given;

v₁ = 5.0 m/s

vf = 0

g = 9.8 m/s²

h = \frac{3}{4g}(v_1^2 -v_f^2) =\frac{3}{4*9.8}(5^2 -0) = 1.91 \ m

Therefore, the hollow cylinder rolled up the inclined plane by 1.91 m

5 0
2 years ago
Other questions:
  • What kind of image does the lens in a camera produce?
    14·1 answer
  • Which of the following statements is true in the case of a collision?
    13·1 answer
  • Your teacher has given each lab group four liquids. Each liquid has been tinted using food coloring. Your teacher has asked you
    10·2 answers
  • Jerry knocks a flowerpot off its third-story ledge, 9.5 m above the ground. If it falls freely, how fast is the flowerpot moving
    12·1 answer
  • Which is the force of repulsion between two positively-charged particles?
    14·2 answers
  • A large truck breaks down out on the road and receives a push back to town by a small compact car.
    5·1 answer
  • A gas in a piston–cylinder assembly undergoes a compression process for which the relation between pressure and volume is given
    9·1 answer
  • Consider the chemical equation CH4 + 2 O2 → CO2 + 2 H2O. In this equation, CH4 is a
    14·2 answers
  • Many things can alter your heart rate including: exercise, diet, nutrition, sugar, and caffeine
    11·1 answer
  • Help me pls im sturgguleing in scince.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!