Answer:
a) A = 4.0 m
, b) w = 3.0 rad / s
, c) f = 0.477 Hz
, d) T = 20.94 s
Explanation:
The equation that describes the oscillatory motion is
x = A cos (wt + fi)
In the exercise we are told that the expression is
x = 4.0 cos (3.0 t + 0.10)
let's answer the different questions
a) the amplitude is
A = 4.0 m
b) the frequency or angular velocity
w = 3.0 rad / s
c) angular velocity and frequency are related
w = 2π f
f = w / 2π
f = 3 / 2π
f = 0.477 Hz
d) the period
frequency and period are related
T = 1 / f
T = 1 / 0.477
T = 20.94 s
e) the phase constant
Ф = 0.10 rad
f) velocity is defined by
v = dx / dt
v = - A w sin (wt + Ф)
speed is maximum when sine is + -1
v = A w
v = 4 3
v = 12 m / s
g) the angular velocity is
w² = k / m
k = m w²
k = 1.2 3²
k = 10.8 N / m
h) the total energy of the oscillator is
Em = ½ k A²
Em = ½ 10.8 4²
Em = 43.2 J
i) the potential energy is
Ke = ½ k x²
for t = 0 x = 4 cos (0 + 0.1)
x = 3.98 m
j) kinetic energy
K = ½ m v²
for t = 00.1
²
v = A w sin 0.10
v = 4 3 sin 0.10
v = 1.98 m / s
100 cm is 1 meter. So your answer would be 0.362 meters.
I would say mass, and weight.
Answer: columbs
Explanation:
Electrical charge are measured in columbs, usually demoted as C. Hence, the charges on proton and electron will be measured in Coloumbs. It typically measures the amount of electricity conveyed per second by a current of 1 ampere. The other units Given such as ; Volt is used for measuring voltage, which is the pressure in an electrical source. AMPERE is used for measuring the current flowing through an electrical circuit.
Dalton is a unit of mass and is about 1.660 * 10^-27 kg
Answer:
0.0613°C
Explanation:
the given parameters are m=15gm=15×10⁻³ V₁=865m/s V₂=534m/s
the bullet moves with different kinetic energies before and after the penetration, therefore
Kinetic energy before - kinetic energy after = 1/2 × m × ( V₁² - V₂²)
=
× 15×10⁻³ × (865² - 534²)
= 3.47 × 10⁻³J
this loss in energy is transferred to the water, therefore
change in temperature = 
where c = heat capacity of water = 4.19 x 10^3
m = mass of water = 13.5 kg
= {3.47 × 10⁻³} / {13.5 x 4.19 x 10^3 }
=0.0613°C