The two molecules will only react if they have enough energy. By heating the mixture, you are raising the energy levels of the molecules involved in the reaction. Increasing temperature also means the molecules are moving around faster and will therefore "bump" into each other more often.
Answer:
I'm thinking Henri's wave and Geri's wave have the same amplitude and energy, but i'm not %100 sure
Explanation:
The answer is low frequency and long wavelength
ionic bond:
Bond formed when an atom donates its electron and other atom receives those electrons.
polar covalent:
Bond formed by equal sharing of electrons between both the atoms and there is an electronegativity difference between the two atoms.
Nonpolar covalent:
Bond formed by equal sharing of electrons between both the atoms and there is no electronegativity difference between the two atoms.
Metallic:
Formed between two metals.
So the bond between :
Phosphorus and chlorine-polar covalent bond as it is formed by equal sharing of electrons between both the atoms and there is an electronegativity difference between the two atoms.
Potassium and oxygen -ionic bond as here potassium donates its electron and oxygen receives those electrons
Fluorine and fluorine -Non polar covalent bond as formed by equal sharing of electrons between both the atoms and there is no electronegativity difference between the two atoms.
Copper and aluminum-metallic bond as Formed between two metals.
Carbon and fluorine -polar covalent bond as it is formed by equal sharing of electrons between both the atoms and there is an electronegativity difference between the two atoms.
Carbon and hydrogen --Non polar covalent bond as formed by equal sharing of electrons between both the atoms and there is no electronegativity difference between the two atoms.
Aluminum and oxygen--ionic bond as here aluminum donates its electron and oxygen receives those electrons
Silver and copper --metallic bond as Formed between two metals.