This problem is providing us with the molality of a solution of calcium iodide as 0.01 m. So the most likely van't Hoff factor is required and theoretically found to be 3 due to the following:
<h3>Van't Hoff factor:</h3>
In chemistry, the correct characterization of solutions also imply the identification of the ions it will release in aqueous solution. For that reason, the van't Hoff factor gives us an idea of this number, according to the formula the solute has got.
In such a way, for calcium iodide, we write its ionization equation as shown below:

Assuming it is able to ionize due to the low molality, because if it was higher, then it won't ionize. Hence, since we have three moles of ion products, one Ca²⁺ and two I⁻, we can conclude the van't Hoff factor would be 3, although calculations may lead to a different, yet close result.
Learn more about the van't Hoff factor: brainly.com/question/23764376
Answer:
Difference in the potential energy of the reactants and products
Explanation:
The products have a lower potential energy than the reactants, and the sign of ΔH is negative. In an endothermic reaction, energy is absorbed. The products have a higher potential energy than the reactants, and the sign of ΔH is positive.
<u>Carbon is an essential element for all life forms on Earth. Whether these life forms take in carbon to help manufacture food or release carbon as part of respiration, the intake and output of carbon is a component of all plant and animal life. Carbon is in a constant state of movement from place to place.</u>
Answer:
Carbon
Explanation:
Carbon is the primary component of macromolecules, including proteins, lipids, nucleic acids, and carbohydrates.