A gas with a vapor density greater than that of air, would be most effectively displaced out off a vessel by ventilation.
The two following principles determine the type of ventilation: Considering the impact of the contaminant's vapour density and either positive or negative pressure is applied.
Consider a vertical tank that is filled with methane gas. Methane would leak out if we opened the top hatch since its vapour density is far lower than that of air. A second opening could be built at the bottom to greatly increase the process' efficiency.
A faster atmospheric turnover would follow from air being pulled in via the bottom while the methane was vented out the top. The rate of natural ventilation will increase with the difference in vapour density. Numerous gases that require ventilation are either present in fairly low concentrations or have vapor densities close to one.
Answer is (3) both mass number and atomic number.
The notation is ₅₅¹³⁷Cs. The Cs represents the chemical symbol of Caesium element. The subscript number at the left hand side of the symbol indicates the atomic number. Hence, atomic number of Cs is 55. The superscript number at the left hand side of the symbol shows the mass number. Hence, the mass number of the Cs is 137.
Answer:
earth surface is uneven because land heats faster than water causes air to warm.,expand and rise over land while it cools and sinks over the cooler waters surface..
Adenine , guanine, cytosine and thymine
44. (a) N2O3 (b) SF4 (c) AlCl3 (d) Li2CO3
46. H Br
δ+ δ−
48. The metallic potassium atoms lose one electron and form +1 cations,
and the nonmetallic fluorine atoms gain one electron and form –1 anions.
K → K+
+ e–
19p/19e–
19p/18e–
F + e–
→ F–
9p/9e–
9p/10e–
The ionic bonds are the attractions between K+
cations and F–
anions.
50. See Figure 3.6.
52. (a) covalent…nonmetal-nonmetal (b) ionic…metal-nonmetal
54. (a) all nonmetallic atoms - molecular (b) metal-nonmetal - ionic
56. (a) 7 (b) 4
58. Each of the following answers is based on the assumption that nonmetallic
atoms tend to form covalent bonds in order to get an octet (8) of
electrons around each atom, like the very stable noble gases (other than
helium). Covalent bonds (represented by lines in Lewis structures) and lone
pairs each contribute two electrons to the octet.
(a) oxygen, O
If oxygen atoms form two covalent bonds, they will have an octet of electrons
around them. Water is an example:
H O H
(b) fluorine, F
If fluorine atoms form one covalent bond, they will have an octet of electrons
around them. Hydrogen fluoride, HF, is an example:
H F
(c) carbon, C
If carbon atoms form four covalent bonds, they will have an octet of electrons
around them. Methane, CH4, is an example:
H H
H
H
C
(d) phosphorus, P
If phosphorus atoms form three covalent bonds, they will have an octet