Answer:
A) if each astronaut breathes about 500 cm³, the total volume of air breathed in a year is 14716.8m³.
B) The Diameter of this spherical space station should be 30.4m
Explanation:
The breathing frequency (according to Rochester encyclopedia) is about 12-16 breath per minute. if we take the mean value (14 breath per minute), we can estimate the total breaths of a person along a year:

If we multiply this for the number of people in the station and the volume each breath needs, we obtain the volume breathed in a year.
The volume of a sphere is:

So the diameter is:
![D=2r=2\sqrt[3]{\frac{3V_{sph}}{4\pi}} =30.4m](https://tex.z-dn.net/?f=D%3D2r%3D2%5Csqrt%5B3%5D%7B%5Cfrac%7B3V_%7Bsph%7D%7D%7B4%5Cpi%7D%7D%20%3D30.4m)
What measures we can't answer without the measures
Answer:
the reflected wavelength is lano = 4.55 10⁻⁷ m which corresponds to the blue color
Explanation:
This is a case of reflection interference, we must be careful
* There is a 180º phase change when light passes from the air to the soap film (n = 1,339), but there is no phase change when passing from the pomp to the plastic (n = 1.3)
* the wavelength within the film is modulated by the refractive index
λₙ = λ₀ / n
if we consider these relationships the condition for constructive interference is
2 t = (m + ½) λₙ
2t = (m + ½) λ₀ / n
λ₀ = 2t n / (m + ½)
we substitute the values
λ₀= 2 255 10⁻⁹ 1,339 / (m + ½)
λ₀ = 6.829 10⁻⁷ (m + ½)
let's calculate the wavelength for various interference orders
m = 0
λ₀ = 6.829 10⁻⁷/ ( 0 + ½ )
λ₀ = 13.6 10⁻⁷
it is not visible
m = 1
λ₀ = 6,829 10⁻⁷/ (1 + ½)
λ₀ = 4.55 10⁻⁷
color blue
m = 2
λ₀ = 6.829 10⁻⁷ / (2 + ½)
λ₀ = 2,7 10⁻⁷
it is not visible
therefore the reflected wavelength is lano = 4.55 10⁻⁷ m which corresponds to the blue color
Answer: It would be 125 J
Answer:
To convert a millisecond measurement to a second measurement, divide the time by the conversion ratio. The time in seconds is equal to the milliseconds divided by 1,000.
Explanation:
hope it helps