Answer:
mass flow rate at water condenses is 36.72 kg/min
Explanation:
given data
temperature t1 = 38°C
temperature t2 = 14°C
humidity ∅= 97 % = 0.97
rate v = 510 m³/min
to find out
mass flow rate at water condenses
solution
by gas equation we find here mass flow rate that is
pv = mRT
put here value and p is 0.066626 bar at 38°C and find m
m = 0.06626 × × 510 / 287×311
m = 37.85 kg/min
so at water condenses mass flow rate is express as
∅ = M / m
Mass flow rate M = ∅ × m
M = 0.97 × 37.85
mass flow rate = 36.72 kg/min
so mass flow rate at water condenses is 36.72 kg/min
Answer:
2 meters
Explanation:
when you step away from a reflection you get farther
Answer: e. Christian Dopplerâ
Explanation:
Based on the information given, the scientist of the past that should definitely be included in the exhibit is Christian Dopplera.
He described how the frequency of sound waves and light is being affected by the relative speed of both the source and also the observer. This was referred to as the Doppler effect.
In this scenario, the Doppler effect can be used to show how the universe is expanding. Therefore, the correct option is E.
Answer:Simple Covalent substance
Explanation:Simple covalent substance describes a substance that has a low melting point and poor electrical conductivity because:
(1)melting point :For the covalent bond and intermolecular force that are present in a simple covalent substance,energy is needed to break the forces of attraction present. In the simple covalent substance, little energy is needed because the intermolecular forces present are broken because they are weaker compared to the covalent bond present.
Therefore, when simple covalent substance melts,only the intermolecular forces are broken leaving only the covalent bond in the substance.
(2) poor conductivity: for a substance to conduct electricity,it must have charged particles which are free to move to and fro.
But in the simple covalent substance,there are no charged particles that can be separated due to the covalent bond present in simple covalent substance.