<span>Answer: 0.094%
</span><span>Explanation:
</span>
<span></span><span /><span>
1) Equilibrium chemical equation:
</span><span />
<span>Only the ionization of the formic acid is the important part.
</span><span />
<span>HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq).
</span><span />
<span>2) Mass balance:
</span><span />
<span> HCOOH(aq) HCOO⁻(aq) H⁺(aq).
Start 0.311 0.189
Reaction - x +x +x
Final 0.311 - x 0.189 + x x
3) Acid constant equation:
</span><span />
<span>Ka = [HCOO-] [N+] / [HCOOH] = (0.189 + x) x / (0.311 -x)
</span><span />
<span>= (0.189 + x )x / (0.311 - x) = 0.000177
4) Solve the equation:
You can solve it exactly (it will lead to a quadratic equation so you can use the quadratiic formula). I suggest to use the fact that x is much much smaller than 0.189 and 0.311.
</span><span />
<span>With that approximation the equation to solve becomes:
</span><span>0.1890x / 0.311 = 0.000177, which leads to:</span>
<span /><span>
x = 0.000177 x 0.311 / 0.189 = 2.91 x 10⁻⁴ M
5) With that number, the percent of ionization (alfa) is:
</span><span />
<span>percent of ionization = (moles ionized / initial moles) x 100 =
</span><span>
</span><span>
</span><span>percent ionization = (concentration of ions / initial concentration) x 100 =
</span><span>
</span><span>
</span><span>percent ionization = (0.000291 / 0.311)x 100 = 0.0936% = 0.094%
</span>
<span></span><span />
Is this a multiple choice?
When children are small they are given vaccines that are usually dead viruses given to the body. These viruses don't cause damage to body and the body takes it as a real virus and prepare antibodies in the body but when a certain real disease or virus is in the body , the already presented antibodies fight with them for the protection of the body. These antibodies remain in the body so that when a disease or virus attacks the body the antibodies are already geared up to fight against them. Thus antibodies protect the body against invading microbes or viruses.
False. Pb is lower than Al in the reactivity series. It cannot replace aluminium in AlCl3
Yes because condensed milk and evaporated milk are similar to one another. However, there won’t be the same sweet flavor but the texture is the same.