In order to make the dissolution of the solid compound in water to occur at a faster rate, Samuel could do the following:
1. Break down the solid into tiny particles: breaking down the solid into tiny particles increases the surface area of the solid and thus increase the quantity of the substance that comes in contact with the solvent per time, this leads to a faster dissolution of the solid.
2. Stir the liquid with iron rod: Samuel can increase the dissolution rate of the substance by stirring it continuously with iron rod.
3. Increasing the temperature:Samuel could also increase the rate of dissolution of the substance by increasing the temperature of the water.
I would say A and D. A is right for sure, as for D, I'm not so sure. Hope this helps!
Yes it is for example look at Iodine and Tellurium.
Hope this helps :).
<span>I think the correct answer is A. A
buffer is a substance that resists small change in the acidity of a solution
when an acid or base is added to the solution. Usually, a buffer involves a
weak acid or a weak alkali and one of its salt.</span>
Answer: -2.373 x 10^-24J/K(particles
Explanation: Entropy is defined as the degree of randomness of a system which is a function of the state of a system and depends on the number of the random microstates present.
The entropy change for a particle in a system depends on the initial and final states of a system and is given by Boltzmann equation as
S = k ln(W) .
where S =Entropy
K IS Boltzmann constant ==1.38 x 10 ^-23J/K
W is the number of microstates available to the system.
The change in entropy is given as
S2 -S1 = kln W2 - klnW1
dS = k ln (W2/W1)
where w1 and w2 are initial and final microstates
from the question, W2(final) = 0.842 x W1(initial), so:
= 1.38*10-23 ln (0.842)
=1.38*10-23 x -0.1719
= -2.373 x 10^-24J/K(particles)