Answer:
HCl
Explanation:
<em>Choices:</em>
<em>CO: 28.01g/mol</em>
<em>NO₂: 46g/mol</em>
<em>CH₄: 16.04g/mol</em>
<em>HCl: 36.4g/mol</em>
<em>CO₂: 44.01g/mol</em>
<em />
It is possible to identify a substance finding its molar mass (That is, the ratio between its mass in grams and its moles). It is possible to find the moles of the gas using general ideal gas law:
PV = nRT
<em>Where P is pressure of gas 0.764atm; V its volume, 0.279L; n moles; R gas constant: 0.082atmL/molK and T its absolute temperature, 295.85K (22.7°C + 273.15).</em>
Replacing:
PV = nRT
PV / RT = n
0.764atm*0.279L / 0.082atmL/molKₓ295.85K = n
<em>8.786x10⁻³ = moles of the gas</em>
<em />
As the mass of the gas is 0.320g; its molar mass is:
0.320g / 8.786x10⁻³moles = 36.4 g/mol
Based in the group of answer choices, the identity of the gas is:
<h3>HCl</h3>
<em />
Тhe arrow should point to the atom with greater electrical energy, in the case of the chlorine atoms
The branch of medicine that deals with the use of radioactive substances in research, diagnosis, and treatment.
Answer:
Dipole-dipole interactions
Step-by-step explanation:
Each molecule consists of <em>two different elements</em>.
Thus, each molecule has permanent <em>bond dipoles</em>.
The dipoles do not cancel, so the attractive forces are dipole-dipole attractions.
"Covalent bonds" is <em>wrong,</em> because there are no bonds between the two molecules.
There are dipole-induced dipole and London dispersion forces, but they are much weaker than the dipole-dipole attractions.