1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
murzikaleks [220]
3 years ago
11

Unscramble acnsrl spgei

Physics
1 answer:
Kay [80]3 years ago
6 0
That would be <span>Spring scale</span>
You might be interested in
What do refrigerators and air conditioners use to move heat?
Aleksandr [31]
your answer is Freon
3 0
3 years ago
Read 2 more answers
Which of the following materials is necessary to stop an alpha particle? a. three feet of concrete c. single sheet of aluminum f
Nat2105 [25]
A single sheet of paper can stop an alpha particle
8 0
3 years ago
Read 2 more answers
A projectile is launched at an angle of 36.7 degrees above the horizontal with an initial speed of 175 m/s and lands at the same
Softa [21]

Answer:

a) The maximum height reached by the projectile is 558 m.

b) The projectile was 21.3 s in the air.

Explanation:

The position and velocity of the projectile at any time "t" is given by the following vectors:

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

v = (v0 · cos α, v0 · sin α + g · t)

Where:

r = position vector at time "t"

x0 = initial horizontal position

v0 = initial velocity

t = time

α = launching angle

y0 = initial vertical position

g = acceleration due to gravity (-9.80 m/s² considering the upward direction as positive).

v = velocity vector at time t

a) Notice in the figure that at maximum height the velocity vector is horizontal. That means that the y-component of the velocity (vy) at that time is 0. Using this, we can find the time at which the projectile is at maximum height:

vy = v0 · sin α + g · t

0 = 175 m/s · sin 36.7° - 9.80 m/s² · t

-  175 m/s · sin 36.7° /  - 9.80 m/s² = t

t = 10.7 s

Now, we have to find the magnitude of the y-component of the vector position at that time to obtain the maximum height (In the figure, the vector position at t = 10.7 s is r1 and its y-component is r1y).

Notice in the figure that the frame of reference is located at the launching point, so that y0 = 0.

y = y0 + v0 · t · sin α + 1/2 · g · t²

y = 175 m/s · 10.7 s · sin 36.7° - 1/2 · 9.8 m/s² · (10.7 s)²

y = 558 m

The maximum height reached by the projectile is 558 m

b) Since the motion of the projectile is parabolic and the acceleration is the same during all the trajectory, the time of flight will be twice the time it takes the projectile to reach the maximum height. Then, the time of flight of the projectile will be (2 · 10.7 s) 21.4 s. However, let´s calculate it using the equation for the position of the projectile.

We know that at final time the y-component of the vector position (r final in the figure) is 0 (because the vector is horizontal, see figure). Then:

y = y0 + v0 · t · sin α + 1/2 · g · t²

0 = 175 m/s · t · sin 36.7° - 1/2 · 9.8 m/s² · t²

0 = t (175 m/s ·  sin 36.7 - 1/2 · 9.8 m/s² · t)

0 = 175 m/s ·  sin 36.7 - 1/2 · 9.8 m/s² · t

-  175 m/s ·  sin 36.7 / -(1/2 · 9.8 m/s²) = t

t = 21.3 s

The projectile was 21.3 s in the air.

7 0
3 years ago
For thermal equilibrium at temperature Tan appropriate measure of energy is kT where k is Boltzmann's constant. Convert the foll
Schach [20]

Answer:

1 cm⁻¹ =1.44K  1 ev = 1.16 10⁴ K

Explanation:

The relationship between temperature and thermal energy is

     E = K T

The relationship of the speed of light

    c =λ f = f / ν          1/λ= ν

The Planck equation is

          E = h f

Let's start the transformations

     c = f λ = f / ν        

     f = c ν

     E = h f

     E = h c ν

     E = KT

     h c ν = K T

     T = h c ν  / K =( h c / K) ν

Let's replace the constants

     h = 6.63 10⁻³⁴ J s

     c = 3 10⁸ m / s

     K = 1.38  10⁻²³ J / K

 

     v = 1 cm-1 (100 cm / 1 m) = 10² m-1

   

     T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²

     A = h c / K = 1,441 10⁻²

     T =  1.44K

     ν = 103 cm⁻¹ = 103 10² m

     T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²

     T = 148K

1 Rydberg = 1.097 10 7 m

As we saw at the beginning the λ=1 / v

     T = (h c / K) 1 /λ

     T = 1,441 10⁻²  1 / 1,097 10⁷

     T = 1.3 10⁻⁹ K

    E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J

    E = KT

    T = E/K

    T = 1.6 10⁻¹⁹ /1.38 10⁻²³

    T = 1.16 10⁴ K

3 0
4 years ago
Suppose light from a 632.8 nm helium-neon laser shines through a diffraction grating ruled at 520 lines/mm. How many bright line
Leya [2.2K]

Answer:

1 bright fringe every 33 cm.

Explanation:

The formula to calculate the position of the m-th order brigh line (constructive interference) produced by diffraction of light through a diffraction grating is:

y=\frac{m\lambda D}{d}

where

m is the order of the maximum

\lambda is the wavelength of the light

D is the distance of the screen

d is the separation between two adjacent slit

Here we have:

\lambda=632.8 nm = 632.8\cdot 10^{-9} m is the wavelength of the light

D = 1 m is the distance of the screen (not given in the problem, so we assume it to be 1 meter)

n=520 lines/mm is the number of lines per mm, so the spacing between two lines is

d=\frac{1}{n}=\frac{1}{520}=1.92\cdot 10^{-3} mm = 1.92\cdot 10^{-6} m

Therefore, substituting m = 1, we find:

y=\frac{(632.8\cdot 10^{-9})(1)}{1.92\cdot 10^{-6}}=0.330 m

So, on the distant screen, there is 1 bright fringe every 33 cm.

6 0
3 years ago
Other questions:
  • HELP PLEAASE!!!You push against a steamer trunk with a force of 750 N at an angle of 25° with the horizontal . The trunk is on a
    6·1 answer
  • The acceleration due to gravity on jupiter is 2.5 times whats on earth. An object of mass 10kg is taken to Jupiter. What is the
    5·1 answer
  • the explorer visited the three places and raised her hand when she reached each of them, where would the change in gravitational
    6·2 answers
  • Gravity is affected by
    11·1 answer
  • Spitting cobras can defend themselves by squeezing muscles around their venom glands to squirt venom at an attacker. Suppose a s
    12·1 answer
  • A climber pulls herself 8 meters upwards with a force of 150 Newtons. If it takes her 16 seconds to cover the 8 meters, how much
    9·1 answer
  • Find the uncertainty in a calculated electrical potential difference from the measurements of current and resistance. Electric p
    9·1 answer
  • What is the central core of hair
    9·2 answers
  • Help me with this please
    11·1 answer
  • Connective Tissue in a tendon is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!