Answer:
They can generate potentials spontaneously because they have Unstable Membrane Potentials.
Explanation:
Autorythmic cells or Pacemaker cells are cells that provide Action potentials (electrical impulses) that starts off the cardiac cycle.
N:B This action potential is created spontaneously.
To explain further, the heart originate in specialized cardiac muscle cells, called autorhythmic cells, that can excite themselves and therefore are able to generate an action potential without external stimulation by nerve cells. And this sets the cardiac cycle i
(Pumping of the heart) into motion. (The pace maker potential)
The Autorhythmic cells create an action potential spontaneously
And this is possible because they have an UNSTABLE RESTING POTENTIAL that is continuously depolarizing, while it drifts slowly toward threshold. As Na+ ions enter the cell, the inner surface of the plasma membrane becomes less negative gradually, thus generating the pacemaker potential.
Answer:
<h2>line B</h2>
Explanation:
According to ohm's law V = IR where;
V i sthe supply voltage (in volts)
I = supply current (in amperes)
R = resistance (in ohms)
In order to calculate the line that is equal to 2ohms, we need to calculate the slope of each line using the formula.
For line B, R = ΔV/ΔI
R = V₂-V₁/I₂-I₁
R = 14.0-4.0/7.0-2.0
R = 10.0/5.0
R = 2.0ohms
Since the slope of line B is equal to 2 ohms, this shows that the line B is the one that represents the 2ohms resistor.
Answer:
Light's angle of refraction = 37.1° (Approx.)
Explanation:
Given:
Index of refraction = 1.02
Base of refraction = 1
Angle of incidence = 38°
Find:
Light's angle of refraction
Computation:
Using Snell's law;
Sin[Angle of incidence] / Sin[Light's angle of refraction] = Index of refraction / Base of refraction
Sin38 / Light's angle of refraction = 1.02 / 1
Sin[Light's angle of refraction] = Sin 38 / 1.02
Sin[Light's angle of refraction] = [0.6156] / 1.02
Sin[Light's angle of refraction] = 0.6035
Light's angle of refraction = 37.1° (Approx.)