Answer:
9.81 × 10 = 98.1 meters
vertical displacement is s=1/2 at^2 + vt
initial vertical velocity is 0 so s=1/2 at^2
a in this instance is gravitational acceleration so 60m= 1/2 (9.81)t^2
solve for t, t = 3.497s. //I corrected this answer as just now I misread horizontal as vertical.
<span>There are Billions and billions of galaxies in the universe containing Trillions and trillions of stars in each galaxy.</span>
Answer:
The optimum wavelength = (8.863 × 10⁻⁷) m = 886.3 nm
Explanation:
The light that will generate the photovoltaic energy of 1.4 eV will must have that amount of energy
Energy of light waves is given as
E = hf
h = Planck's constant = (6.626 × 10⁻³⁴) J.s
f = Frequency of the light
The frequency is then further given as
f = (c/λ)
c = speed of light = (3.0 × 10⁸) m/s
λ = wavelength of the light = ?
E = (hc/λ)
λ = (hc/E)
Energy = E = 1.4 eV = 1.4 × 1.602 × 10⁻¹⁹ = (2.2428 × 10⁻¹⁹) J
λ = (6.626 × 10⁻³⁴ × 3.0 × 10⁸)/(2.2428 × 10⁻¹⁹)
λ = (8.863 × 10⁻⁷) m = 886 nm
Hope this Helps!!!
Answer:
you need at least two out of the three to get any aenser