At the same temperature, steam burns are often more severe that water burns because of water's high HEAT OF VAPORIZATION.
Water possesses high heat of vaporization. The heat of vaporization refers to the amount of heat that is needed to convert a unit mass of water to gas. After getting to the boiling point, a lot of heat is still needed to be absorbed by a boiling water before it can be converted to the gaseous form. Thus, the heat that is inherent in the steam is greater than that which is found in the boiling water, that is why the steam causes more damages.
Answer:
Increasing the temperature of the copper made the final temperature increase and decreasing the temperature of the copper made the final temperature decrease. ... How does changing the initial mass of the copper affect how much heat energy it has? The more copper, the more heat energy.
Explanation:
Answer:D
Explanation:because The farther an object is from a magnet are apart from each other, the weaker the repulsion force will be.
This problem is very easy to answer. You simply have to look at the subscripts of each element of the compound.
1. For caffeine, which has a molecular formula of C₈H₁₀N₄O₂, it contains 8 atoms of Carbon, 10 atoms of Hydrogen, 4 atoms of Nitrogen and 2 atoms of Oxygen.
2. For Iron(III) Sulfate, which has a molecular formula of Fe₂(SO₄)₃, it contains 2 atoms of Iron, 3 atoms of Sulfur, and 12 atoms of Oxygen.