Number of moles of CO2 =
Mass /Ar
= 50.2 / (12 + 32)
1.14 mols
For every 1 mol of gas, there will be
24000 cm^3 of gas
Vol. = 1.14 x 24 dm^3
= 27.36 dm^3
Microwaves are defined as electromagnetic radiations with a frequency ranging between 300 MHz to 300 GHz while the wavelength ranges from 1 mm to around 30 cm. The microwave radiation is commonly referred to as microwaves. They fall between the infrared radiation and radio waves in the electromagnetic spectrum. radio waves in the electromagnetic spectrum.
Answer:
A. It is the ratio of the concentrations of products to the concentrations of reactants.
Explanation:
The equilibrium constant of a chemical reaction is the ratio of the concentration of products to the concentration of reactants.
This equilibrium constant can be expressed in many different formats.
- For any system, the molar concentration of all the species on the right side are related to the molar concentrations of those on the left side by the equilibrium constant.
- The equilibrium constant is a constant at a given temperature and it is temperature dependent.
- The derivation of the equilibrium constant is based on the law of mass action.
- It states that "the rate of a chemical reaction is proportional to the product of the concentration of the reacting substances. "
(4) 220Fr, known as Francium-220, undergoes alpha decay, which emits an alpha particle, also known as a helium nucleus, which has a charge of +2.
Answer:
The volume of the air is 0.662 L
Explanation:
Charles's Law is a gas law that relates the volume and temperature of a certain amount of gas at constant pressure. This law says that for a given sum of gas at a constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases because the temperature is directly related to the energy of the movement they have. the gas molecules. This is represented by the quotient that exists between volume and temperature will always have the same value:

If you have a certain volume of gas V1 that is at a temperature T1 at the beginning of the experiment and several the volume of gas to a new value V2, then the temperature will change to T2, and it will be true:

In this case:
- V1= 0.730 L
- T1= 28 °C= 301 °K (0°C= 273°K)
- V2= ?
- T2= 0°C= 273 °K
Replacing:

Solving:

V2=0.662 L
<u><em>The volume of the air is 0.662 L</em></u>